Читаем Солнечные элементы полностью

Длинноволновой край спектральной чувствительности солнечных элементов ограничен лишь энергетическим положением края основной полосы поглощения (или, как его ранее часто называли, красной границей фотоэффекта), которое определяется шириной запрещенной зоны полупроводника и характером оптических переходов зона — зона. Левый край чувствительности для планарного солнечного элемента зависит в основном от скорости поверхностной рекомбинации на обращенной к свету поверхности элемента.

Ниже представлены предельные значения спектральной чувствительности полупроводникового солнечного элемента планарной конструкции, рассчитанные при указанных ранее идеализированных условиях (нулевая скорость поверхностной рекомбинации, бесконечно большие время жизни и диффузионная длина неосновных носителей заряда и нулевое значение коэффициента отражения):

Анализ результатов расчетного и экспериментального определений спектральной чувствительности позволяет сделать несколько выводов о выборе основных направлений совершенствования технологии солнечных элементов.

Улучшение спектральной чувствительности в длинноволновой области может быть достигнуто за счет увеличения времени жизни неосновных носителей в базовом слое, например, путем перехода к более чистому и высокоомному исходному полупроводниковому материалу и сохранения его свойств в процессе изготовления солнечных элементов.

На основе кремния могут быть изготовлены солнечные элементы с очень высокой чувствительностью в коротковолновой и ультрафиолетовой областях спектра вплоть до 0,2 мкм. C этой целью необходимо резко уменьшить скорость поверхностной рекомбинации и глубину залегания p-n-перехода.

Таким образом, изучение спектральной чувствительности и коэффициента собирания солнечных элементов исключительно полезно для дальнейшего улучшения свойств солнечных элементов, увеличения их КПД и, следовательно, расширения сферы их применения.

Глава 3

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

СОЛНЕЧНЫХ ЭЛЕМЕНТОВ

Методика измерения КПД

Для определения КПД солнечных элементов и батарей необходимо (так же как в случае любых других преобразователей излучения) измерить количество энергии излучения, поступающей на солнечный элемент, и количество электроэнергии, выработанной им. Проблема, однако, осложняется несколькими обстоятельствами: энергия поступает к элементу в форме солнечного излучения, спектральный состав и мощность которого продолжают уточняться даже для внеатмосферных условий, а характеристики наземного солнечного излучения чрезвычайно сильно зависят от состояния атмосферы и часто изменяются в течение весьма непродолжительных периодов времени;

создание имитаторов Солнца, копирующих по всем основным параметрам внеатмосферное или выбранное в качестве стандарта наземное солнечное излучение, представляет собой пока не решенную полностью научно-техническую задачу;

при разработке стабильных эталонных солнечных элементов для настройки имитаторов Солнца следует учитывать особенности оптических и электрофизических свойств каждого типа элементов, в частности их спектральной чувствительности;

при измерении выходных электрических параметров элементов и батарей необходимо иметь в виду сильное влияние последовательного сопротивления элементов и сопротивления измерительных приборов на получаемые значения.

Таким образом, определение КПД солнечных элементов и батарей представляет собой сложную комплексную проблему, и это выделило метрологию полупроводниковых преобразователей солнечного излучения в самостоятельной раздел исследований по фотоэлектричеству.

Основной параметр солнечных элементов и батареи — световая нагрузочная вольт-амперная характеристика — позволяет определить генерируемую электрическую мощность по произведению IoptUoht, оценить полноту использования потенциала запрещенной зоны по напряжению холостого хода; получить представление об уровне оптических и фотоэлектрических потерь по току короткого замыкания и коэффициенту заполнения вольт-амперной характеристики; рассчитать КПД преобразования солнечной энергии в электрическую по отношению мощности, генерируемой элементами и батареями, к мощности падающего солнечного излучения, которую можно измерить с помощью отградуированного эталонного солнечного элемента. Градуировка эталонного элемента заключается в определении абсолютного значения тока его короткого замыкания, например путем пересчета измерений абсолютной спектральной чувствительности на стандартный внеатмосферный или наземный солнечный спектр.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука