Предлагаются разные комбинации родительских молекул, вплоть до сложных органических соединений типа нитрилов, альдегидов, карбоновых кислот и аминокислот, лежащих в основе живой материи. Но есть и мнение, что родительскими могут быть только молекулы, которые имеют в своем составе радикалы (группы из нескольких атомов) со слабой химической связью с молекулярными основаниями, разрушаемой при изменении физических условий. Получившиеся после этого свободные радикалы способны образовывать новые — дочерние — соединения. Эти вопросы требуют дальнейших исследований.
Сейчас считается общепринятым, что в состав кометных атмосфер входят следующие компоненты:
1. Органические молекулы:
а) дочерние (производные): С, С2, С3, CN, СО, CS;
б) родительские: HCN, CH3CN, С3СН и др.;
2. Неорганические молекулы:
а) дочерние: Н, О, ОН, NH, NH2;
б) родительские: Н2О, N2 и др.;
3. Металлы: Na, Са, Cr, Со, Mn, Fe, Ni, Сu, V, Si.
4. Ионы: СО+, СО+2, СН+, CN+, N+2, ОН+, Н20+ и др.
5. Пыль: силикаты.
Предположение о том, что причиной увеличения яркости комет и появления у них комы и хвостов при сближении с Солнцем является присутствие в их ядрах льдов высказал в 1948 г. С.К. Всехсвятский и детально развил в начале 1950-х Ф. Уиппл (хотя близкие идеи высказывали еще П.С. Лаплас и Ф. Бессель). Согласно модели Уиппла, ядро кометы — это ком из «грязного снега», то есть сравнительно рыхлое образование из льдов разного состава (вода, аммиак, метан и углекислый газ), смерзшегося с пылью и фрагментами горных пород. Резкое возрастание светимости кометы объясняется ее нагревом при сближении с Солнцем и потерей вещества вследствие испарения (точнее — сублимации, т.е. перехода вещества из твердой фазы сразу в пар).
У новых или «молодых» комет, совершивших всего одно или несколько сближений с Солнцем, этот процесс идет интенсивно, поскольку они состоят из реликтовых (неизмененных) льдов. Но у «старых» комет при очередных возвращениях к Солнцу испарение вещества происходит все слабее, поскольку на поверхности их ядер накапливаются тугоплавкие частицы пыли и крупные силикатные фрагменты, образующие защитную корку, предохраняющую лежащий под ней лед от испарения.
Модель Уиппла проста, поэтому не может объяснить тонкостей. Если исходить из этой модели, то льды разных летучих соединений должны испаряться с разными скоростями и, что самое главное — при разных температурах, а значит, на разных расстояниях от Солнца. Но это не подтверждают спектральные наблюдения. В 1952 г. модель Уиппла усовершенствовали П. Свинге и А. Дельзем, предположив, что в кометные ядра входят не чистые льды летучих веществ, а их гидраты. В каждое из таких соединений наряду с «родительской» молекулой вещества входят и несколько молекул воды, число которых определяется свойствами родительской молекулы. Такие сложные гидраты могут образовываться в космическом вакууме при очень низких температурах. По физическим свойствам все они очень схожи, в частности, испаряются примерно при одинаковой температуре и с близкими скоростями.
Современные модели «новых» комет представляют ядро как очень рыхлое образование, типа гигантского снежного кома. После многократных прохождений близ Солнца «новая» комета стареет, ее ядро уменьшается за счет потери большей части летучих из поверхностного слоя и покрывается коркой из нелетучих соединений.
С другой стороны, ядра «старых» комет, к которым относят и комету Галлея, хорошо описываются «пятнистой» моделью. Такое название связано с предположением о том, что в поверхностной теплоизолирующей корке имеются дыры, трещины или другие обнажения подкоркового вещества с высоким содержанием летучих соединений, из которых происходит интенсивная сублимация этих веществ, вплоть до истечения газовых струй, способных вызывать реактивное ускорение кометного ядра.
Массы ядер комет, вероятно, лежат в пределах от нескольких тонн (мини-кометы) до 1011—1012 т. Измерить массы кометных ядер пока не удается по причине их малости. Более или менее точно удалось оценить только массу ядра кометы Галлея по его гравитационному влиянию на космические зонды «Вега-1 и -2» (СССР) и «Джотто» (ЕКА), сблизившиеся с ним в марте 1986 г. В тот момент масса ядра была близка к 6×1011 т.