Читаем Солнечная система полностью

Механизм свечения кометных «голов и хвостов» выясняли довольно долго: в период пролета кометы Галлея (1910 II) К. Шварцшильд и Е. Крон в 1911 г. установили, что молекулы и атомы кометной атмосферы не рассеивают, а переизлучают солнечный свет. Но только к 1934 г. стало окончательно ясно, что при этом происходит резонансная люминесценция, при которой атом возбуждается фотоном из основного состояния, а затем возвращается в него, излучая точно такой же фотон. Но обнаружены и другие виды свечения кометных газов, которые не удается объяснить люминесценцией. Например, зеленая и красная запрещенные линии кислорода (которые видны также в спектрах полярных сияний), красная линия атомарного водорода и ряд других. Их наличие в спектрах комет пытались и пытаются объяснить рядом механизмов (электронный удар, фотодиссоциация). Но окончательное решение еще не найдено.

Исследование спектров комет позволяет определить состав газа и его физическое состояние, например, степень ионизации. Выяснилось, что хвосты III типа имеют непрерывный спектр; это подтверждает предположение об их пылевом составе. Хотя хвосты II типа тоже демонстрируют непрерывный спектр, но есть основания считать, что он формируется путем многократного наложения большого количества спектральных полос разных молекул газа. Спектры хвостов I типа, в отличие от других, полосатые. В них присутствует излучение только ионизованных молекул (в основном N+2, СО+ и реже СО+2). Именно с этим связаны аномально большие ускорения частиц в хвостах I типа, которые невозможно объяснить действием лучевого давления. Теперь понятно, что большие ускорения и быстрые спиралевидные и волновые движения в хвостах этого типа вызваны давлением на ионизованный газ потоков солнечного ветра, несущего магнитное поле. Впрочем, далеко не все особенности поведения кометных хвостов уже вполне объяснены.

Поведение кометы

Вдали от Солнца у комет нет атмосферы, и они ничем не отличаются от обычных астероидов. После сближения с Солнцем до расстояния примерно 11 а.е. у них появляется оболочка неправильной формы — кома. Твердое ядро и окружающую его кому вместе называют головой кометы. В телескоп такая комета видна как туманное пятнышко, и отличить ее от далекого звездного скопления или планетарной туманности удается только по заметному собственному движению.

На расстоянии 3—4 а.е. от Солнца у кометы постепенно начинает развиваться хвост, который становится хорошо заметным на расстоянии менее 2 а.е. Хвост кометы представляет величественное зрелище: он простирается иногда на десятки и даже сотни миллионов километров, хотя и представляет из себя «видимое ничто». При дальнейшем сближении кометы с Солнцем ее хвост может разделиться на два и более хвостов, приобретая сложную структуру. Голова же кометы увеличивается до максимального размера на расстояниях 1,6—0,9 а.е., а затем уменьшается.

В разделе «Астероиды» рассказано об спектральной классификации малых планет. Предпринимаются попытки осуществить систематизацию и кометных спектров, чтобы на этой основе провести классификацию комет. Возможно, в будущем, когда будет накоплен больший наблюдательный материал по спектрам разных комет, это удастся осуществить.

Один из способов описания спектров комет предложил астроном И. Боушка. Для краткой характеристики спектра он использует следующие обозначения: «С» (от continuum) для непрерывного спектра; «Е» (от emission) для молекулярного спектра излучения; интенсивность спектра в соответствии с ее ростом характеризуется цифрами 1, 2 и 3; на отсутствие непрерывного или эмиссионного спектра указывает цифра «0»; если наиболее интенсивны полосы циана, добавляется буква «с», если присутствуют линии натрия — буква «n», если линии металлов — буква «m», и т.д. В скобках добавляется гелиоцентрическое расстояние кометы в момент получения спектра. Например, запись для одного из спектров кометы Когоутека (1970 III) выглядит так: СЗЕ1с(1,7). Это означает, что на гелиоцентрическом расстоянии 1,7 а.е. у кометы наблюдался очень сильный непрерывный спектр и слабые молекулярные полосы, среди которых наиболее интенсивными были полосы циана.

По спектрам комет в их головах и хвостах были обнаружены многие атомы, молекулы и пылевые частицы. Зафиксированные в кометах молекулы разделяют на родительские и дочерние. Родительские — это исходные, присутствующие в холодном веществе кометы, а дочерние — фрагменты родительских, возникающие под действием высокой температуры, коротковолнового излучения, бомбардировки космическими частицами. Какие именно молекулы родительские, а какие — дочерние, вопрос непростой. Многие специалисты считают, что родительские — это наиболее стабильные молекулы.

Перейти на страницу:

Все книги серии Астрономия и астрофизика

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука