Читаем Со спичками не шутят полностью

2-26. Из 18 спичек можно сложить 2 равносторонних треугольника и 3 квадрата. А попробуйте обойтись всего девятью спичками для их построения.

2-27. Из 10 спичек сложите 3 квадрата. Затем отнимите 1 спичку и сделайте из оставшихся спичек один квадрат и два ромба.

2-28. Из 10 спичек составлены 3 квадрата. Одна спичка удаляется, а из оставшихся 9 спичек требуется составить три новых равных четырёхугольника.

2-29. Как построить из 10 спичек два правильных пятиугольника и пять равных треугольников?

2-30. Переложите все спички на рисунке к задаче 2-28 так, чтобы образовалась фигура, содержащая 4 квадрата.

2-31. Из 12 спичек составьте три равных четырёхугольника и два равных треугольника.

2-32. Из 12 спичек составьте 12-угольник с прямыми углами.

2-33. Из 12 спичек составьте 5 квадратов.

2-34. Для составления одного равностороннего треугольника необходимо 3 спички (если их не ломать). Составьте 6 равносторонних треугольников, равных между собой, из 12 спичек. После этого переложите 4 спички так, чтобы образовалось 3 равносторонних треугольника, из которых только два были бы равны между собой.

2-35. Переложите 3 спички так, чтобы получились 3 квадрата.

2-36. Переложите 6 спичек так, чтобы получилось 5 квадратов.

2-37. Из 12 спичек сложены 3 квадрата со стороной, равной длине спички. Попробуйте из них сложить 6 единичных квадратов.

2-38. Переложите эти 12 спичек так, чтобы вдоль каждой стороны четырёхугольника их лежало не четыре, как сейчас, а пять.

2-39. Изображённые на рисунке 12 спичек требуется переложить так, чтобы вдоль каждой стороны их было:

а) по 5 штук;

б) по 6 штук.

2-40. В фигуре, изображенной на рисунке к задаче 37:

а) переложите 5 спичек так, чтобы получилось всего 2 квадрата;

б) переложите 3 спички так, чтобы получилось 5 квадратов.

2-41. Из спичек сложите правильный шестиугольник и докажите с помощью дополнительного построения и путём рассуждений правильность построения.

2-42. В фигуре, показанной на рисунке:

а) переложите 3 спички так, чтобы вместо фигуры из 6 равносторонних треугольников получилась фигура их 6 равных четырёхугольников;

б) переложите 3 спички так, чтобы получилось 7 четырёхугольников, но на этот раз они могут быть не равные.

2-43. В фигуре, изображенной на рисунке:

а) переложите 3 спички так, чтобы получилось 3 равных квадрата;

б) переложите 4 спички так, чтобы получилось 3 равных квадрата;

в) переложите 4 спички так, чтобы получилось 2 квадрата;

г) уберите 2 спички так, чтобы осталось 2 квадрата;

д) переложите 2 спички так, чтобы образовалось 7 квадратов (допускается наложение одной спички поперек другой);

е) переложите 4 спички так, чтобы получилось 10 квадратов;

ж) добавьте к исходной фигуре ещё 4 спички так, чтобы квадратов стало 9;

з) расположите те же 12 спичек (все спички должны лежать в плоскости стола) так, чтобы они ограничивали 5 квадратов, причём каждый квадрат должен быть пуст, в противном случае квадраты, изображенные на рисунке, могли бы служить решением, поскольку в качестве пятого мы могли бы считать большой квадрат. Не разрешается ни укладывать две спички одна на другую, ни оставлять свободные концы.

2-44. Спички расположены, как показано на рисунке. Переложите 2 спички так, чтобы получилось 5 равных квадратов.

2-45. В фигуре, изображенной на рисунке:

а) снимите 3 спички так, чтобы получилось 3 равных квадрата;

б) переложите 4 спички так, чтобы получилось 3 не равных квадрата;

в) выложите из пяти малых квадратов три, переложив не более 10 спичек.

2-46. Из 16 спичек сложено 5 квадратов. Переложите 2 спички так, чтобы число квадратов уменьшилось на один.

2-47. В пяти квадратах нужно переложить 4 спички так, чтобы получилось 4 квадрата равной величины.

2-48. Передвинув только 2 спички, постройте 4 одинаковых по размеру квадрата.

2-49. Уберите как можно меньше спичек так, чтобы оставшиеся спички образовали 4 равносторонних треугольника, таких же размеров, как и 8 треугольников в исходной конфигурации, и нигде не торчали свободные концы.

2-50. Уберите 5 спичек так, чтобы осталось только 3 квадрата.

2-51. Уберите 2 спички так, чтобы осталось только 4 квадрата.

2-52. Из 18 спичек, составляющих 6 равных квадратов, отнимите 2 спички так, чтобы осталось 4 таких же квадрата.

2-53. Из 18 спичек составьте:

а) пять квадратов;

б) один треугольник и 6 четырёхугольников по 3 двух разных размеров.

2-54. Из 18 спичек составьте шесть равных четырёхугольников и один треугольник, в два раза меньший по площади.

2-55. В фигуре, изображенной на рисунке:

а) убрать 5 спичек так, чтобы осталось 5 треугольников (два решения);

б) переложить 6 спичек так, чтобы получилась фигура, составленная из 6 симметрично расположенных равных четырёхугольников.

2-56. Переложите 7 спичек так, чтобы получилось 4 квадрата.

2-57. От 7 квадратов, которые образуют крест и составлены из 22 спичек, отнимите 6 спичек так, чтобы осталось 4 таких же одинаковых квадрата.

Перейти на страницу:

Похожие книги

Человек 2050
Человек 2050

Эта книга расскажет о научных и социальных секретах – тайнах, которые на самом деле давно лежат на поверхности. Как в 1960-х годах заговор прервал социалистический эксперимент, находившийся на своём пике, и Россия начала разворот к архаичному и дикому капитализму? В чем ошибался Римский Клуб, и что можно противопоставить обществу "золотого миллиарда"? Каким должен быть человек будущего и каким он не сможет стать? Станет ли человек аватаром – мёртвой цифровой тенью своего былого величия или останется образом Бога, и что для этого нужно сделать? Наконец, насколько мы, люди, хорошо знаем окружающий мир, чтобы утверждать, что мы зашли в тупик?Эта книга должна воодушевить и заставить задуматься любого пытливого читателя.

Евгений Львович Именитов

Альтернативные науки и научные теории / Научно-популярная литература / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Кризис
Кризис

Генри Киссинджер – американский государственный деятель, дипломат и эксперт в области международной политики, занимал должности советника американского президента по национальной безопасности в 1969—1975 годах и государственного секретаря США с 1973 по 1977 год. Лауреат Нобелевской премии мира за 1973 год, Киссинджер – один из самых авторитетных политологов в мире.Во время работы доктора Киссинджера в администрации президента Ричарда Никсона велась регулярная распечатка стенограмм телефонных разговоров. С 2001 года стенограммы, хранящиеся в Национальном архиве США, стали общедоступными.Эти записи и комментарии к ним Генри Киссинджера передают атмосферу, в которой принимались важные решения, и характер отношений, на которых строилась американская политика.В книге обсуждаются два кризиса – арабо-израильская война на Ближнем Востоке в октябре 1973 года и окончательный уход из Вьетнама в 1975 году.В формате PDF A4 сохранен издательский макет книги.

Антон Цвицинский , Генри Киссинджер , Джаред Мейсон Даймонд , Руслан Паушу , Эл Соло

Фантастика / Экономика / Современная русская и зарубежная проза / Научно-популярная литература / Образовательная литература