Читаем Схемотехника аналоговых электронных устройств полностью

Транзисторные усилители СВЧ могут выполняться по схемам каскадных усилителей, усилителей распределенного усиления, каскадно-распределенных и балансных.

В каскадных усилителях наиболее часто используют каскады с ОЭ (ОИ), реже с ОБ (ОЗ) из-за проблемы согласования с характеристическим сопротивлением тракта в широком частотном диапазоне. Поскольку коэффициент усиления транзистора с ростом частоты уменьшается, то расчет ШУ и согласование нагрузок проводят для верхней частоты рабочего диапазона. Избыточное усиление в области НЧ и СЧ устраняют так называемыми выравнивающими цепями, которые могут быть реактивными и диссипативными (с потерями).

Диссипативные выравнивающие цепи рассчитывают так, чтобы обеспечить требуемый KP, хорошее согласование с характеристическим сопротивлением тракта передачи (малый КСВН) и устойчивость в диапазоне рабочих частот. В дециметровом диапазоне рабочих частот выравнивающие цепи могут быть реализованы в виде цепей с сосредоточенными параметрами, на более высокочастотном — с распределенными параметрами. Примеры простейших диссипативных выравнивающих цепей приведены на рисунке 7.9, причем более сложный вариант (рисунок 7.9б) — для сверхширокополосных усилителей (fв/fн>2).

Рисунок 7.9. Простейшие диссипативные выравнивающие цепи

Задача согласования и выравнивания коэффициента передачи в диапазоне рабочих частот облегчается при использовании ООС. При резистивной ООС (рисунок 7.10а) достигается широкополосное согласование в каскаде на ПТ. В сверхширокополосных усилителях используют комбинированные резистивно-индуктивные цепи ООС (рисунок 7.10б), с помощью которых осуществляется эффективное выравнивание АЧХ.

Рисунок 7.10. ООС в СВЧ ШУ

Усилители с распределенным усилением (УРУ) (рисунок 7.11) позволяют достичь большой мощности выходного сигнала на низкоомной нагрузке за счет сложения токов транзисторов в выходной линии. Однако УРУ отличает сложная схемная реализация и низкий КПД.

Рисунок 7.11. УРУ

Каскадно-распределенные усилители (рисунок 7.12), сочетая достоинства каскадных и УРУ, позволяют получить хорошие мощностные характеристики в широкой полосе рабочих частот при относительно простой схемной реализации. Выбором Rэ1 и Rэ2 добиваются одинакового усиления по току транзисторов VT1 и VT2. Поскольку выходные токи транзисторов складываются в нагрузке, то возможно использование данного каскада на частотах, близких к fT используемых транзисторов.

Рисунок 7.12. Каскадно-распределенный усилитель

Балансные ШУ (рисунок 7.13) позволяют уменьшить паразитную обратную связь между транзисторами при их каскадировании, что позволяет увеличить устойчивый коэффициент усиления. Наличие направленных ответвителей (НО) существенно увеличивает габариты балансных усилителей.

Рисунок 7.13. Балансный усилитель

Для расчета СВЧ усилителей наиболее широко используется система S-параметров (параметров рассеяния). При этом транзистор представляют в виде четырехполюсника, нагруженного на стандартные опорные сопротивления, как правило, равные волновому сопротивлению применяемых передающих линий (рисунок 7.14).

Рисунок 7.14. Транзистор как четырёхполюсник в системе S-параметров

Выбор S-параметров обусловлен относительной простотой обеспечения режима согласования на СВЧ (по сравнению, скажем, с режимом короткого замыкания при измерении Y-параметров), и, следовательно, корректностью их экспериментального определения, а также ясным физическим смыслом, а именно:

   — коэффициент отражения от входа при согласованном выходе;

   — коэффициент отражения от выхода при согласованном входе;

   — коэффициент усиления в прямом направлении при согласованном выходе;

   — коэффициент усиления в обратном направлении при согласованном входе.

Для анализа передаточных характеристик СВЧ усилительных устройств также используют обобщенный метод узловых потенциалов, эквивалентные Y-параметры определяются через измеренные параметры рассеяния:

где Δs=(S11+1)·(S22+1)–S12S21.

Параметры рассеяния транзистора (или любого четырехполюсника) можно рассчитать по его эквивалентной схеме, используя все тот же обобщенный метод узловых потенциалов:

Sij = kijΔji/Δ – δij,

где kij — нормировочный коэффициент, равный:

1/Zг — для Sii,

1/Zн — для Sjj,

  для Sij и Sji;

δij — символ Кронекера, δij=1, если i=j, и δij=0, если i≠j.

Ввиду сложности эквивалентных схем усилительных элементов и наличия распределенных структур, расчет передаточных характеристик усилителей СВЧ диапазона возможен только с помощью ЭВМ. Используя современные пакеты проектирования РЭУ, базы данных элементов и готовых схемных решений, разработчики имеют возможность, не проводя дорогостоящего натурного моделирования, получить ожидаемые реальные значения передаточных характеристик. С помощью ЭВМ возможно построение оптимальной топологии подложки усилителей, что позволяет полностью автоматизировать процесс проектирования усилителей СВЧ.

Перейти на страницу:

Похожие книги

GPS: Все, что Вы хотели знать, но боялись спросить
GPS: Все, что Вы хотели знать, но боялись спросить

Определение своего положения с помощью GPS навигатора, отдельного прибора, или устройства, встроенного в карманный компьютер или сотовый телефон, уже стало совершенно обычной вещью.Постепенно столь же привычным становится определение положения объекта с помощью систем телематики на основе GPS/GSM/GPRS, когда на мониторе компьютера или экранчике сотового телефона можно увидеть участок карты с отметкой, где находится другой человек или его автомобиль.«GPS» — это первые буквы английских слов «Global Positioning System» — глобальная система местоопределения. GPS состоит из 24 искуственных спутников Земли, сети наземных станций слежения за ними и неограниченного количества пользовательских приемников-вычислителей. «GPS» предзначенна для определения текущих координат пользователя на поверхности Земли или в околоземном пространстве.По радиосигналам спутников GPS-приемники пользователей устойчиво и точно определют текущие координаты местоположения. Погрешности не превышают десятков метров. Этого вполне достаточно для решения задач НАВИГАЦИИ подвижных объектов (самолеты, корабли, космические аппараты, автомобили и т.д.).Как и многие многоцелевые вещи в нашем быту, приемник системы глобального позиционирования (GPS) по мере знакомства с ним обнаруживает массу полезных свойств, даже сверх тех, для которых он был приобретен первоначально. Оказывается существует много любопытных вопросов, на который он с легкостью отвечает, — например, какую скорость вы развиваете при ходьбе, какое расстояние вы преодолеваете при занятии бегом и с какой максимальной и средней скоростью, какую скорость вы развили, спускаясь с горы на лыжах, насколько точен спидометр вашего автомобиля и т. д. Однако основное его назначение — определение координат.

Б. К. Леонтьев , Борис Константинович Леонтьев

Компьютерное 'железо' (аппаратное обеспечение), цифровая обработка сигналов / Компьютерное «железо» / Книги по IT
Wi-Fi: Все, что Вы хотели знать, но боялись спросить
Wi-Fi: Все, что Вы хотели знать, но боялись спросить

Жизнь современного человека — это движение. Мобильность для нас становится одним из самых важных моментов для работы, для общения, для жизни. Многие из нас сейчас уже не представляют жизнь без сотовых телефонов, которые из средства роскоши превратились в предмет, без которого жизнь современного человека стала просто немыслима. Многие уже оценили все преимущества Bluetooth, GPRS. Эти устройства превратили наши телефоны из средств связи в незаменимых помощников в работе. К сожалению, один из самых главных недостатков этих беспроводных технологий — малый радиус действия и низкая скорость передачи данных, что сейчас становится очень важным фактором для всех нас. Поэтому к нам на помощь приходит активно развивающийся во всем мире и в России стандарт Wi-Fi. Особенно радует, что в крупных городах России, особенно в Москве и Санкт-Петербурге, начинается массовое внедрение беспроводных сетей Wi-Fi в публичных местах (так называемых Hot Spot) — отелях, аэропортах, ресторанах, торговых центрах и кафе.Что же такое Wi-Fi? Очередной мыльный пузырь IT-индустрии, который изо всех сил надувают производители и поставщики телекоммуникационного оборудования или новая технология, призванная в очередной раз изменить наш привычный мир, как это случилось когда-то с появлением Интернет и сотовой связи?

А К Щербаков , А. К. Щербаков

Компьютерное 'железо' (аппаратное обеспечение), цифровая обработка сигналов / Интернет / Компьютерное «железо» / Книги по IT
Аппаратные интерфейсы ПК
Аппаратные интерфейсы ПК

Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.

Михаил Юрьевич Гук

Компьютерное 'железо' (аппаратное обеспечение), цифровая обработка сигналов