Читаем Школа должна учить мыслить! полностью

Но, само собой ясно, что ребенку не сообщишь «понятия числа», очищенное от каких бы то ни было следов «наглядности», от связи с каким-нибудь одним «частным случаем». Поэтому надо искать и найти такой «частный» (а потому наглядный, чувственно-предметный) случай, где число и необходимость действий с числом выступали бы перед ребенком в общем виде. Нужно искать такое «частное», которое выражало бы только «общую» природу числа, а не подсовывало бы ему вместо этого опять лишь «частное».

Пытаясь решить эту задачу – отчасти психологическую, отчасти – логическую и математическую, сотрудники лаборатории пришли к выводу, что неправильно вообще начинать обучение детей математике с «числа», то есть с операции счета, сосчитывания. Безразлично – «единичных вещей» или их «составных частей» {10}.

Есть все основания полагать, что действия с «числами», составляющие традиционную «арифметику», далеко не самые «простые», а арифметика вовсе не составляет самого «первого этажа» математического мышления. Скорее таким этажом оказываются некоторые понятия, обычно относимые к «алгебре».

Опять парадокс. Ведь по традиции считается издавна, что «алгебра» – это вещь более сложная, чем «арифметика», посильная лишь шестикласснику и в «истории математики» оформившаяся позже ее.

Анализ показывает, что и в истории знания «алгебра» необходимо должна была возникнуть не позже «арифметики». Конечно, речь идет о действительной истории математического развития людей, а не о истории математических трактатов, которая отражала подлинную историю лишь «задним числом», а потому – кверху ногами.

Как показывают исследования, простейшие количественные соотношения, которые описывает «алгебра», и в истории были осознаны раньше, чем человек вообще «изобрел» число и счет. В самом деле, раньше, чем люди изобрели число, счет, сложение, вычитание, деление и умножение чисел, они по необходимости должны были пользоваться такими словами, как «больше», «меньше», «дальше», «ближе» «потом», «раньше», «равно», «неравно» и т.п. Именно в этих «словах» нашли свое выражение общие количественные (пространственно-временные) соотношения между вещами, явлениями, событиями.

Но в специально-математических трактатах эта стадия математического развития мышления, естественно, зафиксирована не была. И если реальная история развития математического мышления началась раньше, чем появились первые теоретические трактаты по математике, то и «логическая» последовательность преподавания математики (= развития математической способности) должна начинать с действительного «начала».

С правильной ориентировки человека в количественном плане реальной действительности, а не с числа, которое представляет собою лишь позднюю (а потому и более сложную) форму выражения количества, лишь частный случай «количества».

Поэтому надо начинать с действий, выделяющих для человека этот «количественный» план рассмотрения окружающего мира, чтобы потом придти к «числу» как к развитой форме выражения «количества», как к более позднему и сложному умственному отвлечению. [49].

Принцип совпадения «логического с историческим» – великий принцип диалектической логики. Но его проведение предполагает одну опять-таки диалектически-коварную деталь. А именно, логическое должно соответствовать действительной истории предмета, а не истории теоретических представлений относительно этой истории.

Анализируя историю политической экономии, Карл Маркс отметил важнейшее (с точки зрения диалектики) обстоятельство: «Историческое развитие всех наук только через множество перекрещивающихся и окольных путей приводит к их действительной исходной точке. В отличие от других архитекторов наука не только рисует воздушные замки, но возводит отдельные жилые этажи здания, прежде чем она заложила его фундамент» {11}.

Да, действительный «логический фундамент», на котором держатся верхние этажи, наука «открывает» в своем предмете лишь задним числом.

И этот «фундамент» предполагался «верхними этажами», но не был ясно понят, показан и проанализирован. Он предполагался в смутном, неотчетливо сформулированном виде, часто в качестве «мистических» представлений. Так случилось, например, и с дифференциальным исчислением. Ньютон и Лейбниц это исчисление «открыли», научили людей им пользоваться, но сами не могли понять – почему, на каких реальных основаниях держится вся его сложная конструкция, то есть – какие более «простые» понятия и действия она реально предполагает. Это было установлено лишь позже – Лагранжем, Эйлером и другими теоретиками.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия