Отсюда было естественно вернуться к идее квантовых скачков из одного стационарного состояния в другое, и Шрёдингер был крайне недоволен таким исходом наших споров. Но даже с учетом всего этого и после признания квантовых скачков мы все еще не знали, что может означать слово «состояние». Естественно, можно было попытаться — что довольно скоро и было сделано — установить, можно ли описать траекторию электрона в камере Вильсона с помощью шредингеровской волновой механики. Обнаружилось, что это невозможно. Начальное состояние электрона могло быть представлено в виде волнового пакета. Этот волновой пакет приходил затем в движение, и таким путем мы получали нечто вроде траектории электрона в камере Вильсона. Трудность, однако, заключалась в том, что этот волновой пакет должен был становиться все больше и больше и при достаточной продолжительности движения достигнуть диаметра в один сантиметр или более. Эксперименты говорили явно о другом, так что эту картину тоже пришлось отбросить. В такой ситуации было, естественно, много трудных дискуссий, ибо все мы были убеждены, что математическая схема квантовой, или волновой, механики уже приняла окончательный вид. Она не допускала изменений, и нам предстояло выполнять все свои вычисления по ее схеме. А с другой стороны, никто не знал, как представить по этой схеме такой простой случай, как прохождение электрона в камере Вильсона. Борн сделал первый шаг, рассчитав с помощью теории Шрёдингера вероятность процессов столкновения; он предложил считать, что квадрат волновой функции — это не плотность электрического заряда, как думал Шрёдингер, а показатель вероятности обнаружения электрона в данной точке.
Наконец, явились Дирак и Йордан со своей теорией преобразования. По их схеме можно было преобразовать
Поставив вопрос таким образом, я сразу осознал то обстоятельство, что траектория движения электрона в камере с водяным туманом не является бесконечно тонкой линией со строго определенными положениями и скоростями движения; в действительности траектория его движения в камере — это ряд точек, не очень точно отмеченных капельками воды, и скорости здесь определены тоже не так уж хорошо. Я поставил тогда простой вопрос: «Если бы мы захотели знать как скорость, так и положение волнового пакета, то какой максимальной точности мы могли бы достичь, исходя из того принципа, что в природе встречаются лишь ситуации, поддающиеся представлению в математической схеме квантовой механики?» Это была несложная математическая задача, и результатом явился принцип неопределенности, похоже, отвечавший экспериментальной ситуации. Итак, мы наконец узнали,
Такое представление электрона не позволяет приписать электрону на его траектории никаких определенных характеристик, как-то: координат, импульсов и т. д. Можно говорить лишь о том, с какой вероятностью в практических условиях эксперимента мы встретим электрон в определенной точке или установим определенную величину его скорости. Так мы приходим к определению состояния электрона, которое намного абстрактнее, чем первоначальная картина его траектории. Математически мы описываем его вектором в Гильбертовом пространстве, и этот вектор показывает вероятность результатов всех экспериментов, какие можно провести над электроном в данном состоянии. Состояние может измениться при получении любой новой информации.