Why did colonial forms develop so early? Maybe it was because of the air. Oxygen, generated today by green plants, must have been in short supply before the Earth was covered by vegetation. But ozone is generated from oxygen. No oxygen, no ozone. If there’s no ozone, the searing ultraviolet light (UV) from the Sun will penetrate to the ground. The intensity of UV at the surface of the Earth in those early days may have reached lethal levels for unprotected microbes, as it has on Mars today. We are concerned—and for good reason—that chlorofluorocarbons and other products of our industrial civilization will reduce the amount of ozone by a few tens of percent. The predicted biological consequences are dire. How much more serious it must have been to have no ozone shield at all.
In a world with deadly UV reaching the surface of the waters, sunblock may have been the key to survival—as it may become again. Modern stromatolite microorganisms secrete a kind of extracellular glue that helps them to stick together and also to adhere to the ocean floor. There would have been an optimum depth, not so shallow as to be fried outright by unfiltered UV, and not so deep that the visible light is too feeble for photosynthesis. There, partly shielded by sea-water, it would have been advantageous for the organisms to put some opaque material between themselves and the UV. Suppose, in reproducing, the daughter cells of one-celled organisms did not separate and go their individual ways, but instead remained attached to one another, generating—after many reproductions—an irregular mass. The outer cells would take the brunt of the ultraviolet damage; the inner ones would be protected. If all the cells were spread out thinly on the surface of the sea, all would die; if they were clustered together, most of the interior cells would be sheltered from the deadly radiation. This may have been a potent early impetus for a communal way of life. Some died that others might live.
There are no earlier fossils known, in part because there’s very little of the Earth’s surface surviving from much before 3.6 billion years ago. Almost all the crust from that epoch has been carried deep into our planet’s interior and destroyed. In a rare 3.8-billion-year-old sediment from Greenland, there is some evidence from the kinds of carbon atoms present that life may have been widespread even then. If so, life happened sometime between about 3.8 and maybe 4.0 billion years ago. It could not have arisen much earlier. So—because of the inhospitability of the Hadean Earth, and the need for adequate time to evolve the stromatolite-building microbes—the origin of life must be confined to a comparatively narrow window in the expanse of geological time. Life seems to have arisen very quickly.
Tentatively, tortuously, the orphan is trying to figure out, to the nearest hundred million years, when the family tree took root. “How” is much harder than “when.” Deadly environmental perils, a kind of huddling together for mutual protection, and the deaths—of course, neither willing nor unwilling—of vast numbers of little beings were characteristic of life almost from the beginning. Some microbes were saving their brethren. Others were eating the neighbors.
——
When life was first emerging, the Earth seems to have been mainly an ocean planet, the monotony broken, here and there, by the ramparts of large impact craters. The very beginnings of the continents date back about 4 billion years. Being made of lighter rock, then as now, they sat high on the moving, continent-sized plates. Then as now, the plates apparently were being extruded out of the Earth, carried across its surface as on a great conveyor belt, until plummeting back into the semifluid interior. Meanwhile, new plates were emerging. Vast quantities of mobile rock were slowly exchanged between the surface and the depths. A great heat engine had been established.
By about 3 billion years ago the continents were becoming larger. They were transported halfway around the Earth by the crustal plate machinery, opening one ocean and closing another. Occasionally, continents would crash into each other in exquisite slow motion, the crust would buckle and crinkle, and mountain ranges would be thrust up. Water vapor and other gases spewed out, mainly along mid-ocean ridges and volcanoes at the edges of plates.
Today we can readily detect the growth of continents, their relative motion over the Earth’s surface (sometimes called continental drift), and the subsequent transport of the ocean floor down into the interior, in a style of motion called plate tectonics. The continents tend to stay afloat even when their underlying plates plunge down to destruction. Still, time takes its toll even on continents. Some old continental crust is always being carried to the depths and only bits and pieces of truly ancient continents have survived to our time—in Australia, Canada, Greenland, Swaziland, Zimbabwe.