Во втором случае микросистема, поглотившая квант света, переходит из возбужденного состояния в некоторое промежуточное. Чтобы осуществить люминесценцию в данном случае, нужна дополнительная энергия, как говорят — энергия активации. Что ее может дать? Хотя бы собственное тепло тела. Чем выше температура тела, тем значительнее энергия активации. Естественное следствие отсюда — большая зависимость длительности люминесценции от температуры. Когда температура низка, эта длительность может быть очень большой.
Третий вид — рекомбинационное свечение — тоже длительное свечение, и оно, подобно вынужденному, за-, висит от температуры. От второго вида люминесценции это, третье, отличается лишь своим внутренним механизмом. Поскольку он довольно сложен и для нашей книги первостепенного интереса не представляет, мы не будем останавливаться на его описании.
Так вот, послесвечение спонтанной люминесценции длится до 10-2 — одной сотой секунды.
Прочие два вида связаны со временем гораздо большим: есть тела, которые светятся после прекращения облучения часы, недели и даже годы.
Все время мы говорили о люминесценции, вызванной одной причиной: светом, его падением на поглощающее вещество. Физики, уточняя такой процесс, называют его фотолюминесценцией.
Но есть и другие способы возбуждения холодного свечения: рентгеновскими лучами (рентгенолюминесценция), механическим дроблением кристаллов (триболюминесценция), химическими процессами (хемилюминесценция), химическими же процессами, но в живых организмах (биолюминесценция), нагреванием в пламени (кандолюминесценция) и так далее.
Любопытно, что в простейших случаях различные способы возбуждения молекул вызывали один и тот же эффект. Вавилов брал, например, кристаллы урановой соли и обрабатывал их разными способами, чтобы вызвать самосвечение: дробил молотком, облучал ультрафиолетовыми лучами, помещал их в поток электронов.
И во всех случаях результат был один.
Кристаллы светились независимо от их обработки одним и тем же цветом.
Глава 1. В Берлине
В то время когда Вавилов при помощи теории квантов настойчиво искал разгадку тайны люминесценции, из-за рубежа начали поступать сообщения о новых поразительных открытиях в области мельчайших частиц материи. Сама квантовая теория с ее многочисленными затруднениями стала быстро поглощаться новым физическим учением, гораздо более широким и совершенным, — так называемой волновой, или квантовой, механикой.
О том, что потребность в ревизии старой теории назрела, свидетельствует тот любопытный факт, что первые квантовомеханические идеи появились почти одновременно сразу в трех странах: Франции, Германии и Англии.
Во всем были различны люди, заложившие фундамент нового раздела физики: французский аристократ, выходец из королевского дома Бурбонов Луи де Бройль; сын профессора истории церкви, юный геттингенский теоретик Вернер Гейзенберг; сорокалетний профессор университета в Цюрихе и Бреслау Эрвин Шредингер; долговязый сверстник Гейзенберга, сын швейцарца и англичанки Поль Адриен Дирак… Различны были и их подходы к теоретическим вопросам.
Но результаты их исследований удивительно совпадали между собою, освещали с разных сторон одну и ту же истину.
Первый шаг в новом направлении сделал Луи де Бройль (1924). В своей диссертации, выполненной под руководством знаменитого парижского физика-теоретика
Поля Ланжевена, де Бройль высказал невероятно смелое предположение о том, что каждый движущийся электрон сопровождается своеобразной волной — «волной де Бройля», — определяющей многие особенности его поведения.
Предполагалось, что эта волна существенно отличается от световой, иначе говоря — электромагнитной. И все же между частицей света — фотоном — и частицей вещества — электроном — по гипотезе де Бройля существует нечто общее: обеим им присуща своеобразная двойственность. Выходило, что материя в любом ее виде, то есть в виде ли вещества или в виде света, одновременно обладает свойствами и волны и частицы.
Французский физик оказался прав. Это подтвердили год-два спустя немецкие физики Вернер Гейзенберг и Эрвин Шредингер. Следуя в формально-математическом отношении совсем иными путями, они пришли к тем же выводам, что и их парижский коллега.
А еще двумя годами позже, в 1928 году, 26-летний Поль Дирак установил, что между светом и веществом общего даже больше, чем это следовало из теории де Бройля — Гейзенберга — Шредингера.
— Дирак пришел к теоретическому выводу, что при некоторых условиях свет может превращаться в вещество и обратно, — рассказывал потом Сергей Иванович на лекции своим студентам. — В сильном электрическом поле световые кванты с длиной волны не больше одной тысячной миллимикрона, по Дираку, могут распадаться на две противоположно заряженные частицы: электрон и позитрон. Это было весьма удивительным теоретическим предсказанием, но оно все же полностью подтвердилось на опыте. Превращение света в вещество доказано экспериментально.