Волна, обегающая по спирали вокруг веревки, не имеет ярко выраженных крайностей — полюсов. Ведь ее любое положение похоже на все другие. Это неполяризованная волна. Волна за узкой щелью имеет крайности — полюсы. Она поляризованная волна. Сжимая и разжимая створки двери, мы можем придавать свободной — неполяризованной — волне ту или иную степень поляризации: от нуля до ста процентов.
Таким образом, луч света (и вообще всякая электромагнитная волна) может пребывать в поляризованном, неполяризованном и частично поляризованном состоянии.
Нечто напоминающее вышеописанную картину происходит с пучком света, взаимодействующим с веществом.
Так называемый элементарный излучатель — колеблющаяся молекула — обычно испускает свет поляризованный; подобно маятнику часов, она колеблется в одной плоскости. В той же плоскости изменяется и электрическое поле, воспринимаемое нами как свет. Но раскаленные молекулы и атомы горячих источников света — Солнца, лампы и другие — обычно расположены хаотически. Они колеблются в различных направлениях, и их суммарный свет всегда неполяризованный.
Однако так бывает лишь до тех пор, пока световой пучок не вступит во взаимодействие с веществом. Отразившись от зеркальной поверхности, свет поляризуется. То же обнаруживается и при прохождении электромагнитных волн через специальные поляризующие среды. В других случаях степень поляризации может быть не стопроцентной, а какой-нибудь иной, меньшей. Возможно и сохранение прежней неполяризации, например, при отражении света от очень шероховатой поверхности.
Велико различие пучка света, взаимодействующего с веществом, и веревки — «змеи», «проползающей» через щель. Но есть между ними и нечто общее: «преодолев препятствие», они сохраняют его след. По тому, как изменяются колебания веревки, можно вывести заключение о размере щели, через которую она проходит. По степени поляризации света при взаимодействии его с веществом можно судить о некоторых особенностях в строении молекул и в механизме поглощения и испускания света.
Впрочем, последнее обстоятельство было установлено не сразу: его открыли только в результате длинной серии работ.
Когда Вавилов вместе с Лёвшиным в 1921 году впервые занялись изучением поляризации люминесценции, они для начала решили проверить самый факт: а существует ли поляризация люминесценции? И сразу обнаружили, что существует. У ярко люминесцирующих водных растворов флуоресцина свечение не поляризовано, у слабо же светящихся красителей поляризация наблюдалась.
Летом 1922 года появилась статья немецкого физика Ф. Шмидта, в которой указывалось на важное значение для возникновения поляризации люминесценции большой вязкости растворителя. Сообщение Шмидта вызвало живой интерес у двух московских оптиков, и они стали производить тщательное исследование явления в вязких растворителях.
В результате Вавилов и Левшин выявили количественную связь между вязкостью растворителя и степенью поляризации свечения раствора. Они установили, что у различных люминесцирующих веществ существует почти одна и та же предельная поляризация свечения: 35–40 процентов.
В 1924 году Лёвшин открыл существование зависимости между степенью поляризации и длиною волны возбуждающего света. Это именно обстоятельство и указывало на связь поляризации с природой самой излучающей молекулы. Вавилов тщательно исследовал это явление.
Перед физиками раскрылась заманчивая перспектива — изучать тончайшую структуру вещества по степени поляризации света при взаимодействии его с молекулами. Впоследствии этот метод получил чрезвычайно широкое распространение.
Однажды сотрудник института нечаянно рассыпал пакетик с леденцами-петушками, купленными для детей.
— Дайте-ка один, — попросил Сергей Иванович, когда конфеты были собраны. — Этот краситель нами еще не проверялся.
Когда леденец был подвергнут облучению, все вдруг с удивлением увидели, что он засиял, как звезда во лбу Василисы Прекрасной. Опытные люминесценщики не встречали ничего подобного.
Петушки, правда, светились недолго, для продолжительных люминесцентных исследований оказались малопригодными. Но толчок был дан. Вадим Леонидович научился изготовлять «леденцы что надо»! Постепенно увеличивая вязкость сахарных растворов, чтобы удлинить свечение, Лёвшин добился того, что получил исключительно эффектные люминесцирующие составы.
С той поры сахарные фосфоры («леденцы») московских оптиков были признаны во всем мире одним из самых интересных объектов для исследования на холодное свечение.
Ценою неустанных поисков Вавилову и его сотрудникам удалось наконец понять физическую сущность холодного свечения. Под совсем еще недавно непонятное явление природы была, как говорят, подведена прочная научная основа. Один из учеников Д. С. Рождественского, выдающийся фотохимик, впоследствии академик, Александр Николаевич Теренин, с достаточным основанием сказал:
«Исследования Сергея Ивановича и его школы по люминесценции определили в значительной мере развитие мировой науки в этой области, занимая в ней ведущее место».