Для этого увеличим число витков всех вторичных обмоток, чтобы создать запас по напряжению для ШИМ: накальную обмотку — до четырех витков вместо трех, анодную — до 116х4/3 = 155 витков. Хм… И сколько же теперь у нас будет анодного напряжения?
Берем калькулятор, вычисляем 250х156/116 = 336 В!
Замечательно… И это притом, что максимально допустимое напряжение на аноде 6П14П всего 300 вольт. Но ведь в нашем источнике питания будет ШИМ, он все это срежет — ответит навскидку любой радиолюбитель. И, увы, окажется неправ.
Рассмотрим простейшую схему RC-фильтра (рис. 8.1).
Рис. 8.1.
Выход генератора прямоугольных импульсов через резистор (им может служить внутреннее сопротивление генератора) подключен к конденсатору. Среднее напряжение на конденсаторе зависит от соотношения длительностей импульса генератора к периода их следования.
Можно покрутить ручки генератора и убедиться — среднее напряжение на конденсаторе будет «следить» за вашим манипуляциями. Теория блестяще подтверждается. Беда здесь лишь в том, что в блоке питания ничего похожего на нашу схему нет! В блоке питания (рис. 8.2) цепи заряда и цепи разряда конденсатора разделены!
Рис. 8.2.
И если в этой схеме разорвать контакт S1, то какими бы короткими не были импульсы со стороны источника питания, рано или поздно конденсатор обязательно зарядится до максимально возможного напряжения, потому что накопленную энергию ему просто некуда девать! А ведь именно эта ситуация и имеет место при включении лампового усилителя: лампы холодные, прогреются еще нескоро, поэтому потребления тока по анодной цепи практически нет. Где здесь выход?
Выход подсказывает здравый смысл — поскольку такая ситуация будет иметь место только при включении усилителя и прогреве ламп, нужно подавать анодное напряжение на лампы не сразу, а только после прогрева нитей накала. Более того, такой режим питания ламп считается более благоприятным, чем одновременная подача анодного и накального напряжения. В некоторых ламповых устройствах тех далеких времен даже устанавливались два выключателя питания — «сеть» и «анод», и второй нужно было включать только после прогрева ламп.
Итак, первый, самый предварительный вариант функциональной схемы будущего блока питания (рис. 8.3).
Рис. 8.3.
Несколько очевидных пояснений:
♦ входной фильтр (I) нужен для того, чтобы защитить как наш блок питания от помех по сети, так и сеть от помех, создаваемых нашим блоком питания;
♦ выпрямитель (II) нужен для того, чтобы преобразовать переменное напряжение сети в постоянное;
♦ импульсный (III) конвертор нужен для преобразования постоянное напряжение сети в высокочастотное переменное;
♦ трансформатор (IV) нужен для получения необходимых выходных напряжений;
♦ выпрямитель вторичного напряжения (V) нужен для получения постоянного анодного напряжения;
♦ реле времени (VI) нужно для задержки подачи анодного напряжения на усилитель;
♦ выпрямитель низкого напряжения (VII) нужен для питания реле времени и организации обратной связи по напряжению, необходимой для стабилизации напряжения накала.
Для того, чтобы собрать стабилизированный источник питания, необходимо сначала выбрать схему конвертора (хотя мы, по сути дела, сделали это при расчете трансформатора). Выбирать однотактную схему в нашем случае не следует:
♦ во-первых, велика мощность;
♦ во-вторых, кольца с однотактными схемами не очень «дружат».
Схема со средней точкой, имея достаточно простую схему управления, помимо проблем с перенапряжениями, вчетверо увеличит число витков первичной обмотки по сравнению с полумостом, а мотать 280 витков на кольце, неустанно заботясь при этом о качестве изоляции — задача, достойная мазохиста.
Хотим ли мы использовать в схеме конвертора биполярные или полевые транзисторы? Вопрос далеко не праздный, ведь те же компьютерные блоки питания в большинстве своем собраны на биполярных транзисторах. Все так, но соображения, которыми руководствуется промышленность, вовсе не обязательно совпадают с радиолюбительскими.
А соображения эти, в первую очередь, экономические — высоковольтные биполярные транзисторы пока еще заметно дешевле, и будут таковыми еще достаточно долго. Но для управления биполярными транзисторами нужен дополнительный трансформатор, который нам придется мотать самим. Взять готовый (из тех же компьютерных блоков питания) не получится, потому что он намотан не на кольце, а от других магнитопроводов мы заранее и категорически отказались.
Итак, принимаем решение создать