Читаем Семь шагов в электронику полностью

Выберем первый вариант (двухтактный усилитель), и получим в результате 62,5 Вт. Добавим теперь мощность, потребляемую цепями накала. Предположим для этого, что выходной каскад собран на лампах 6П14П, как это частенько бывает. Их номинальный ток накала — 0,75 А. Умножаем его на четыре (количество выходных ламп), и получаем общий ток потребления 3 ампера. Осталось умножить его на 6,3 В — и мы получим мощность накала (примерно 19 Вт). Итого 62,5 + 19 = 80 Вт, которую теперь можно смело округлить до 100 Вт — ведь мы не учли еще массу мелких потребителей энергии.

Дальнейшее совсем просто — типовое анодное напряжение для ламп 6П14П — 250 В. В результате этих простейших прикидочных расчетов мы уже можем внятно сформулировать технические требования к будущему блоку питания:

♦ мощность — до 100 Вт;

♦ напряжение накала — 6,3 В с током до 4 А (3 + непредвиденные расходы);

♦ анодное напряжение — 250 В с током до 0,3 А ((100 Вт — 6,3 В х 4 А)/250 В).

Какой трансформатор мотать

Первое, с чем необходимо определиться, — трансформатор блока питания. Мы потребовали, чтобы блок питания можно было бы размещать внутри шасси усилителя.

 Примечание.

Но помните, что шасси усилителя — это очень уязвимое место в плане помех.

Наш блок питания, ни в коем случае, не должен воздействовать на остальные элементы схемы усилителя, а возможностей у него, к великому сожалению, даже слишком много. И первая из них — магнитные поля.

Уместно в связи с этим вспомнить принцип работы электронной лампы. Мы ведь все его хорошо помним — электроны из нагретого катода под действием электрического поля летят к аноду. Но на электроны воздействует не только электрическое, но и магнитное поле! Если трансформатор блока питания, не дай Бог, окажется вблизи входной лампы (а это может быть, в том числе, и потому, что ни в какое другое место нам блок питания пристроить не удалось), то наводка на входную лампу нам гарантирована. Спасти от нее может, разве что, железный экран.

 Примечание.

Поэтому трансформатор нашего блока питания либо должен быть полностью экранирован, либо иметь минимальные наводки.

Все это однозначно предопределяет конструкцию трансформатора — он должен быть намотан на кольце, потому что кольцо имеет самые низкие поля рассеяния.

Теперь необходимо рассчитать параметры трансформатора. Ссылки на формулы и программу расчета у нас были на шаге 7.

Воспользовавшись ими (в предположении, что источник питания будет собран по полумостовой схеме), получим следующий результат:

♦ магнитопровод— М2000НМ К28х16х9, частота преобразования 80 кГц;

♦ первичная обмотка — 71 виток, диаметр провода 0,5 мм;

♦ анодная обмотка — 116 витков, диаметр провода 0,35 мм;

♦ накальная обмотка — 3 витка, диаметр провода 1,2 мм.

И вот тут настало время задуматься. Накальная обмотка имеет всего три витка. Однако, в этом есть доля лукавства — если мы «обратным счетом» вычислим напряжение на ней, оно будет равно не 6,3, а 6,6 В.

Конечно, можно сделать эту обмотку поменьше, чтобы он давала точно 6,3 В. Берем калькулятор, быстренько вычисляем 3х6,3/6,6 и обнаруживаем, что обмотка должна содержать 2,86 витка. А теперь попробуйте себе представить, как выглядит обмотка, содержащая 2,86 витка? Удалось? Мне — нет!

Покатился снежный ком!

Ну вот, приехали. Каким образом мы собираемся мотать обмотку с точностью до сотых долей витка? Видимо, у нас есть три возможности:

♦ поиграться с высоковольтной обмоткой. На «высокой» стороне обмотка содержит аж 71 виток, там плюс-минус пара витков ничего радикально не изменит, а на «низкой» стороне мы получим то, что нам необходимо;

♦ намотать заведомо большее число витков, а излишек напряжения каким-либо образом погасить;

♦ сделать стабилизированный блок питания.

Первый путь больше похож на самообман. Да, мы можем отрегулировать число витков первичной обмотки, но как убедиться в том, что низковольтная обмотка содержит ровно три витка? Ведь достаточно при монтаже трансформатора просто посильнее прижать к нему выводы обмотки (добавив тем самым сотые доли витка) — и, пожалуйста, — проблема вновь всплыла!

Второй путь не совсем понятен. Мы можем погасить излишек напряжения, например, с помощью резистора. Но его нужно будет каждый раз пересчитывать под конкретные параметры того или иного усилителя. Даже простая замена лампы потребует такого пересчета.

Можно вместо резистора поставить какой-либо стабилизатор напряжения, но стабилизаторы напряжения не работают от переменного тока. Значит, необходим мощный выпрямитель напряжения накала, фильтр и прочие удовольствия. Нет, этот путь отпадает.

Стабилизированный источник питания — вот что нам требуется!

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника