Строго говоря, Виета нельзя назвать профессиональным математиком: он был адвокатом, а после восшествия на престол Генриха IV занял должность при дворе и даже служил королевским советником. Легендарную известность ему принесла криптография: он с легкостью расшифровывал послания испанского монарха Филиппа II, врага Генриха IV. Филипп II в конце концов заподозрил, что французский король заключил сделку с дьяволом, поскольку ему удавалось мгновенно угадывать все его дипломатические уловки, Виет достиг отличных результатов в геометрии и алгебре, продвинул вперед тригонометрию и решение уравнений. Возможно, важнейшим из его открытий является создание современного символического языка алгебры, который произвел революцию в математике и способствовал прогрессу в науке.
Его принципиальным соперником, а впоследствии другом был Адриан ван Роумен (1561–1615).
Виет предложил ему задачу о касающихся окружностях, известную как задача Аполлония.
* * *
Друг и соперник Виета, голландский геометр Адриан ван Роумен (1561–1615) бросил все силы на изучение метода Архимеда и, использовав многоугольники с огромным числом сторон, в 1593 году с точностью определил 16 десятичных знаков π.
Но огромный труд ван Роумена не сравнится с работой, которую проделал Аюдольф ван Цейлен (1540–1610). Этот немецкий математик был одержим идеей вычисления числа π. В 1596 году он нашел первые 20 знаков, позднее доведя число знаков до 35, которые стоит привести здесь:
π = 3,14159265358979323846264338327950288…
В общем случае эта задача имеет восемь различных решений.
Ван Цейлен получил такую известность, что во многих странах число π стало известно как лудольфово число. Свое любимое число ван Цейлен даже повелел высечь на своем надгробии в городе Лейден. К сожалению, во время Второй мировой войны его могила была разрушена. В главе 5 приведена иллюстрация, на которой изображена его могила с нанесенными на каменное надгробие знаками числа π, восстановленная в 2000 году. Упорные труды ван Цейлена заслуживают подобного памятника.
Виллеброрд Снелл (1580–1626), печатавшийся под латинизированным именем Снеллиус, прежде всего известен как первооткрыватель законов преломления света. Он также пробовал вычислить число π и рассчитал 35 его знаков, опубликованных в 1621 году в книге Cyclometricus. Он использовал ощутимо более точный способ по сравнению с методом Архимеда. Правильность расчетов Снелла позднее подтвердил великий Христиан Гюйгенс (1629–1695).
В 1630 году астроном Христоф Гринбергер (1561–1636), австрийский иезуит, установил новый рекорд, дойдя в расчетах до 39-го знака. Потомки достойно увековечили его память: его имя носит один из лунных кратеров. Нельзя представить лучшее вознаграждение для астронома и для того, чей сан священника не позволял принимать мирские подношения.
Готфрид Лейбниц и Исаак Ньютон обессмертили свои имена, создав анализ бесконечно малых величин — кошмар для многих студентов, видящих в этой дисциплине лишь нагромождение интегралов и производных. Лейбниц и Ньютон достигли математического рая: им удалось «приручить» бесконечность, более того, показать, как перейти от конечного к бесконечному и вернуться обратно, принеся с собой нужные результаты. Многие, подобно проницательному и мечтательному Архимеду, ступали на этот путь. Лейбниц и Ньютон смело прошли по нему и показали входы и выходы лабиринта, в котором скрывалось неизведанное.
Степенные ряды и интегралы — результат применения приемов анализа в математике. Расчет числа π перестал заключаться в механическом измерении многоугольников и стал математической задачей, требующей работы «маленьких серых клеточек», как говорил знаменитый сыщик Эркюль Пуаро.