Читаем Секреты числа пи [Почему неразрешима задача о квадратуре круга] (Мир математики. т.7.) полностью

Примерно в 20 году до н. э. известный римский архитектор, военный инженер и писатель Марк Витрувий Поллион (ок. 85 — ок. 20 гг. до н. э.), более известный как Витрувий, создал монументальный труд «Десять книг об архитектуре», где используется соотношение, найденное в Месопотамии: π = 25/8. Сам Витрувий произвел оценку числа π с помощью колеса с нанесенными отметками. Тем не менее он известен потомкам не поэтому, а благодаря рисунку Леонардо да Винчи «Витрувианский человек» с каноническими пропорциями человека.

«Витрувианский человек» с каноническими пропорциями тела человека, определенными древнеримским архитектором Витрувием. Знаменитый рисунок Леонардо да Винчи (1452–1519).

Несмотря на столь широкую известность, Витрувий не добился более точного результата, чем Архимед. Это удалось египетскому астроному, астрологу и географу греческого происхождения Клавдию Птолемею (ок. 100 — ок. 170 гг.). Для расчетов он использовал 120-угольник, получив поразительно точный результат π = 3 + (17/120) = 3,141666… К сожалению, это не принесло ему заслуженной славы среди потомков. Он известен благодаря одному из своих трудов, «Альмагесту» в 13 книгах, название которого с древнегреческого переводится как «Великое построение». С этой книги началась традиция создания трудов, описывающих все известные на данный момент знания. Фактически «Альмагест» Птолемея не терял актуальности вплоть до появления работ Коперника.

Уделяя основное внимание западной культуре, мы часто забываем, что в эпоху Античности процветали и другие города помимо вавилонских, греческих, римских и египетских. Западная цивилизация наблюдала появление числа π, но что же происходило в это время на далеком Востоке?

Например, в Китае этому вопросу уделяли внимание Чань Цан (ок. 220 г. до н. э.), который принял значение π равным 3, и другие математики. Чжан Хэн (78-139 гг.н. э.), который занимался астрономией и математикой и изобрел прибор для регистрации землетрясений, в одной из своих книг рассчитал значение π = 736/232 = 3,1724… При вычислении объема шара, вписанного в куб, он использовал приближенное значение π = √10 = 3,162277…

Ван Фань (217–257 гг. н. э.) в 250 году рассчитал приближенное значение π = 142/45 = 3,155555…

Математик Лю Хуэй (ок. 220 — ок. 280 гг.) является автором комментариев к «Математике в девяти книгах». Именно по этим комментариям, изданным в 263 году, нам известно о существовании этого ученого и о его достижениях. Лю Хуэй приводит рекуррентную формулу для расчета периметра правильного многоугольника, имеющего 3∙2k сторон при известном периметре многоугольника, число сторон которого равно 3∙2k-1. Лю Хуэй рекомендовал использовать значение π = 3,14, хотя сам он вычислил значение π = 3,141592104…, для чего потребовалось использовать многоугольник с 3072 сторонами.

Несколько веков спустя Цзу Чунчжи (429–500 гг.), ученый и математик, который разработал новый календарь, с превосходной точностью оценил верхнюю и нижнюю границы числа π:

3,1415926 < π < 3,1415927.

Он также рекомендовал использовать значение 22/7 для простых вычислений и 355/113 — для более сложных.

Перенесемся в Древнюю Индию, где выдающийся мудрец Ариабхата (ок. 476–550 гг.) получил значение π, равное 3,1416, используя многоугольник с 384 сторонами.

Брахмагупта (598–665 гг.), вне всякого сомнения наиболее одаренный индийский математик, создал объемный труд «Брахма-спхута-сиддханта», где, к сожалению, приводится достаточно неточная оценка

π = √10 = 3,162277…

Марка, выпущенная в 1999 году Федеративными Штатами Микронезии, на которой изображен метод Лю Хуэя для расчета приближенного значения π.

Более точное значение было получено лишь в XII веке усилиями Бхаскары II (1114–1185) в его книге «Лилавати». Книга носит имя его дочери, которая, если судить по важности этого труда, должна была быть прекраснейшей девушкой — удивительно, но именно это и означает имя Лилавати. Бхаскара II приводит π = 3917/1250 = 3,1416.

Наша система счисления является позиционной с основанием 10. В ней используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, имеющие индо-арабское происхождение. Мы не уделяем этому особого внимания, но именно появление этой системы счисления способствовало развитию торговли: западная цивилизация получила математический инструмент, благодаря которому вычисления стали доступны для всех.

Индо-арабские цифры в том виде, в каком они впервые появились в западном мире (974–976 гг.) в Альбельденском (Вигиланском) кодексе, названном так по имени монаха — автора иллюстраций для этого собрания документов.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное