Причина столь долгого разногласия в том, что прямая линия по существу представляет собой мужскую полярность энергии Вселенной, а спиралевидные линии — женскую полярность. Обе они важны для существования Творения; они объединяются в сферу или Единство. Без спиралевидных женских линий, предназначенных для сохранения, мужская геометрия не могла бы строиться и расти. Существует несколько глубоких философских идей о взаимоотношении между универсальными мужскими и женскими принципами. Их можно обнаружить, медитируя на их согласованность; например, как любовь женщины может питать и поддерживать мужчину. Возможно, это еще один слой объяснения, почему у ведических ученых был бог Пуруша и богиня Практити — центральные фигуры их сакральной геометрии.
Возможно, у читателя все еще есть проблема с визуализацией, как эти прямые и кривые линии взаимодействуют друг с другом. На картинке 7.2 левый рисунок показывает раковину Наутилуса — один из самых лучших способов, которым Природа естественно демонстрирует нам спираль “фи”. Правый рисунок показывает математическую прогрессию той же самой спирали, и как она формирует основу геометрии шести треугольников. Эти треугольники можно видеть либо как расширяющиеся вовне, либо свертывающиеся внутрь, в зависимости от вашего восприятия. Каждый треугольник соотносится со своим соседом в отношении фи. Это означает: если вы сравните площадь поверхности одного треугольника с площадью поверхности следующего большего треугольника, то получите пропорцию 1:1,618 между ними. Это относительно основной и хорошо известный математический принцип.
Сейчас, если мы посмотрим на рисунок треугольника справа, то сможем представить, что центр спирали будет представлять собой центр сферы. Тогда мы могли бы рассматривать спираль, как выходящую из центра. Самый маленький треугольник был бы геометрией в центре, и с каждым б
Далее мы предложим еще одну цитату из
“Именно в работе Ганса Дженни мы начинаем видеть взаимоотношение формы и звука в физическом мире. Эксперименты Дженни показали, что звуковые частоты обладают свойством случайным образом организовывать подвешенные частицы или организовывать эмульсии в гидродинамической дисперсии (то есть, плавающие в жидкости частицы) в упорядоченные и строгие периодические паттерны. Иными словами, звук — это инструмент, посредством которого временн
Этот параграф изобилует очень специфической технической лексикой, но имеет все, что нам нужно. Исследование д-ра Дженни, известное как Киматика, обсуждает, что происходит с частицами, плавающими в растворе, когда они подвергаются вибрации звуковых волн; частицы загадочным образом организовываются в геометрические формы. Рисунок 7.3 показывает “киматическую” силу в действии, а внутри легко просматривается Платонова геометрия. В данном случае это гармоника четвертой плотности, а именно два взаимопроникающих тетраэдра в сферическом поле. В работе Дженни мы можем ясно видеть спиралевидные линии, лежащие в основе всех геометрий, и эффект “сфер внутри сфер”, поскольку в этом рисунке существуют, по крайней мере, три пограничные области, вокруг которых вы можете нарисовать окружность. В апреле 2002 года, в частной беседе с исследователем сакральной геометрии Греггом Брейденом нам сообщили, что из этой структуры могут быть смоделированы все Платоновы Тела. Вот почему ей уделяется так много внимания. В качестве примера: внутри центральной звезды можно легко видеть пятиугольные грани додекаэдра. Изображение немного “свободное”, ибо жидкость не является истинной сферой, а скорее каплей воды на волнообразно вибрирующей пластинке.