(Почему время так меняется? Представьте себе, что рядом с вами стоит машина, в которой сидит ваша приятельница, стучащая мячом об пол салона. Мячик движется вверх-вниз, и вы с вашей подружкой, разумеется, сойдетесь во мнении насчет того, какое расстояние он при этом пролетает. Пускай теперь она заведет машину и поедет, а вы будете стоять на обочине и наблюдать. Для вашей подруги мяч будет по-прежнему скакать вверх-вниз (эксперимент мысленный: в реальной жизни не стоит забавляться мячом, управляя автомобилем). Но для вас мяч будет проходить более длинный путь – по мере того, как машина будет двигаться по дороге вперед.
А теперь представьте, что скачет не мячик, а луч света. И для вас, и для вашей подруги он будет двигаться с одной и той же скоростью (Эйнштейн показал, что это свойственно свету). Тут-то и возникает странность. Вашей приятельнице кажется, что луч света в ее машине проходит небольшое расстояние. Вам же кажется, что он (двигаясь с той же скоростью, потому что скорость света всегда неизменна[12]) преодолевает при этом большее расстояние.
Как нечто может преодолевать два разных расстояния, двигаясь с одной и той же скоростью? Эйнштейн осознал, что единственный ответ здесь такой (выразим его посредством нашего мысленного эксперимента): если с вашей точки зрения – с точки зрения стоящего на обочине наблюдателя – время в движущемся автомобиле замедляется, у летящего света появляется больше времени на движение, и он успевает покрыть большее расстояние. Такой эффект будет проявляться для всех объектов, которые движутся относительно вас, будь то автомобили, космические корабли или даже воображаемые гигантские обезьяны, ловко скользящие по небоскребам.
Эффект становится особенно заметен, если представить себе более быстрое движение. Допустим, Кинг-Конг не захотел оставаться на вершине Крайслер-билдинга: он заметил несущиеся к небоскребу машины газетчиков, поэтому в 20:32 он вместе со своей спутницей запрыгивает в подвернувшийся космический корабль и кружит по галактике, а потом они вновь приземляются на вершину Крайслер-билдинга – 8 февраля 2017 года (по вашему счету). Вы мчитесь туда, протискиваетесь сквозь толпу фотографов, а также продюсеров, предлагающих вам поучаствовать в реалити-шоу, и радостно обнимаетесь с огромным зверем (еще более радостно – с его подружкой-актрисой). И просите их помочь вам высчитать по Минковскому то расстояние в пространстве – времени, которое они преодолели.
Они с готовностью показывают вам путевой журнал, который старательно вели весь полет. Ознакомившись с этими данными, вы приходите в замешательство. Для вас вполне очевидно «расстояние» между тем событием, когда Кинг-Конга последний раз видели на Крайслер-билдинге, и нынешней ситуацией. То событие имело место 2 марта 1933 года, в 20:32. Теперь вы стоите на том же месте, так что «разница» составляет «ноль авеню, ноль улиц, 83,9 лет». Однако путевой журнал Кинг-Конга показывает вам куда более краткий временной промежуток – из-за искажений времени, вызванных гигантскими пространственными расстояниями, которые он преодолел во время своего скоростного путешествия.
Это очень важно подчеркнуть: различные люди постоянно оказываются на различных «дорожках» времени. И не только вы с вашим воображаемым путешественником Кинг-Конгом не сойдетесь на том, какова же дистанция между двумя событиями подобного рода. Все мы движемся с разной скоростью, и если вглядеться пристальнее, обнаружится, что между нами, строго говоря, всегда могут возникать некоторые объяснимые разногласия насчет того, какое время разделяет два события.
Получается какой-то рецепт хаоса. Получается, мы живем во вселенной, где ничто ни с чем не связано. Получается, каждый из нас пребывает в своем отдельном мирке, и мы сталкиваемся друг с другом совершенно случайно, без всяких причин и без всякого смысла. Однако Минковский показал, что, хотя пространство и время нельзя увязать друг с другом посредством простого «вычитания событий», они все-таки взаимосвязаны. Он ввел понятие иного расстояния между событиями и назвал такое расстояние интервалом. Этот интервал для всех наблюдателей, как бы они ни двигались, оказывается одинаковым. Хотя ваше пространство и ваше время могут отличаться от моих, Минковский обнаружил, что интервал, определяемый как