Читаем Роман с Data Science. Как монетизировать большие данные полностью

С интернет-рекламой все стало проще. Все ссылки помечаются специальными тегами, например utm-метками. Обратите на них внимание, когда кликаете на рекламе. После перехода на сайт на компьютер пользователя записываются так называемые куки-файлы (cookies), по которым сайт узнает этого посетителя, когда он туда вернется. С помощью этого механизма можно отследить покупки пользователя, сделанные через несколько дней или недель после перехода с рекламы. Не правда ли, что это выглядит намного точней, чем при традиционной офлайн-рекламе? Именно так я наивно и считал в далеком 2005 году, когда только начал заниматься оценкой эффективности рекламы в онлайне. Тогда не было такого количества рекламы и перекрестных переходов, поэтому ее влияние отслеживалось хорошо.

В наши дни рекламы стало не просто много, а очень много, и пользователь перед покупкой порой делает несколько переходов с разных источников рекламы. Вначале он может искать что-то в поисковике, перейти на сайт интернет-магазина c поисковой рекламы, сделать в магазине пару кликов, уйти с сайта. Через несколько дней он может вернуться на сайт с так называемой ретаргетинговой рекламой (например, этим занимается уже известная нам Criteo), зарегистрироваться в магазине, бросить товар в корзину и уйти с сайта. Скорее всего, через несколько часов или даже минут он (или она) получит письмо – «вы забыли оформить заказ, ваш товар уже в корзине». Пользователь возвращается на сайт магазина из письма и совершает заказ. Внимание, вопрос: благодаря какой рекламе пользователь сделал покупку? Кажется очевидным, что если бы не его первый переход из поисковой системы, магазин точно не получил бы заказ. Но как быть с остальными двумя – ретаргетинговой рекламой и письмом с просьбой завершить заказ? Действительно ли они повлияли на результат в этой цепочке переходов?

В стандартных инструментах веб-аналитики обычно выигрывает последний клик (last click attribution). В нашем примере это письмо о забытом заказе, но его бы не было без первых двух переходов. Это называется проблемой реатрибуции – когда разные источники рекламы «бьются» между собой за заказ. Как посчитать эффективность рекламы, если было несколько разных переходов с источников рекламы перед целевым действием, например заказом? Чтобы ответить на этот вопрос наверняка, нужно провести А/Б-тест – половине людей показывать ретаргетинг, другой – нет. Половине людей отправить письмо, другой – нет. А если эффективность ретаргетинга и email зависят друг от друга? В теории можно было бы сделать сложный многофакторный тест – но на практике это невыполнимо. А/Б-тесты такого типа в интернет-рекламе – очень сложные и достаточно дорогие, так как приходится отключать часть интернет-рекламы, а это падение выручки. Многие великие умы бьются над созданием альтернативных способов расчета эффективности рекламы. Возможно, рано или поздно они выработают систему, в основе которой будет лежать некий вероятностный подход: например, давать больший вес начальным переходам. Чтобы построить такую модель, нужно сделать много А/Б-тестов, которые обойдутся очень дорого, но при этом все равно получить некую частную, а не общую модель, которую невозможно распространить на всю индустрию.

В рекламной веб-аналитике вы еще встретитесь с двумя терминами – сквозная аналитика и когортный анализ. Под сквозной аналитикой обычно понимают работу с клиентом на индивидуальном уровне: от показа рекламы до отгрузки заказа отслеживания последующих действий заказчика. Это делается с помощью уникальных идентификаторов клиента (ID), с помощью которых его «ведут» в разных системах, от рекламных до логистических. Благодаря этому можно считать затраты на рекламу и обработку заказов с точностью вплоть до индивидуального клиента, пусть и с некоторым приближением.

Когорта в маркетинге – это группа людей, которые совершили определенное действие в заданный промежуток времени. Под когортным анализом подразумевается отслеживание таких однородных групп клиентов. Самое главное его назначение – расчет LTV (Life Time Value), количества денег, которые приносит клиент за определенный промежуток времени. Предположим, вы определили, что этот период будет составлять три месяца, и решили считать LTV первого числа каждого месяца (рис. 12.1). Каждый расчетный месяц аналитик будет «смотреть» на клиентов, которые совершили свой первый заказ или регистрацию три месяца назад, и считать их покупки за эти три месяца, потом делить это число на число клиентов. Для такого расчета нельзя использовать клиентов, которые совершили первое действие четыре или два месяца назад.

Рис. 12.1. Расчет LTV

<p><strong>Внутренняя веб-аналитика</strong></p>
Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес