Читаем Роман с Data Science. Как монетизировать большие данные полностью

Управление гипотезами совсем непростая штука, как кажется на первый взгляд. Например, у нас в Retail Rocket только три из 10 гипотез по улучшению рекомендаций дают положительный результат. Чтобы провести эксперимент с одной гипотезой, требуется минимум полтора месяца. Это очень дорогое удовольствие. Что обычно понимается под гипотезой? Какое-либо изменение, которое приведет к улучшению чего-либо. Обычно это рационализаторское предложение, направленное на улучшение определенной метрики. Метрика – обязательный атрибут. На старте работы компании это была конверсия сайта (процент посетителей, которые сделали покупку). Потом мы пошли дальше: захотели повысить заработок в расчете на одного посетителя сайта (Revenue Per Visitor), увеличить средний чек покупки, среднее количество заказов в товаре и даже визуальную привлекательность рекомендуемых товаров. Рационализаторские предложения могут быть разными: от исправления ошибки в алгоритме до внедрения алгоритма машинного обучения на нейронных сетях. Мы старались все изменения алгоритмов прогонять через гипотезы. Потому что даже исправление несложной ошибки в реальной жизни может привести к ухудшению метрики.

Гипотезы, как и задачи, имеют свой жизненный цикл. Во-первых, все гипотезы нужно очень четко приоритизировать, поскольку трудоемкость огромная и результат на практике появится далеко не сразу. Ошибка в приоритизации будет дорого стоить. Я считаю, что приоритизация гипотез должна быть извне: цели должен определять бизнес. Обычно в интернет-компаниях это делает отдел продукта. Они общаются с клиентами и знают, что будет лучше для них. Моя персональная ошибка в Retail Rocket была в том, что я первые годы приоритизировал гипотезы сам. Аналитики варились в собственном соку, придумывали гипотезы, приоритизировали их, экспериментировали. Да, мы неплохо оптимизировали алгоритмы, этот задел нам пригодился в конкурентной борьбе. Но если бы мы тогда больше думали о том, чего хочет клиент, то добились бы большего. Я списываю это на то, что аналитики в какой-то момент стали слишком квалифицированны (overqualified) и бизнес за нами не поспевал. Оценить гипотезу, понять ее потенциальную пользу, найти баланс между трудоемкостью и ее эффектом – это искусство.

Интересно, что на Западе такие проблемы тоже актуальны. В 2016 году я подал заявку на доклад «Тестирование гипотез: как уничтожить идею как можно быстрее» [23] на международную конференцию RecSys по рекомендательным системам. Туда очень сложно попасть, все доклады проходят инспекцию несколькими учеными. Предыдущую нашу заявку на доклад [24] отклонили, но в этот раз моя тема оказалась достаточно актуальной, чтобы доклад приняли в программу. Я выступил в концертном зале MIT в Бостоне. В докладе был рассказ о том, как мы проверяем гипотезы. Помню, что страшно волновался, текст учил чуть ли не наизусть. Но все прошло хорошо, я даже получил лично положительный отзыв от Шавье Аматриана, экс-руководителя аналитики Netflix, он был одним из организаторов конференции. Тогда Аматриан пригласил меня на собеседование в офис компании Quora, топ-менеджером которой он был в то время – видимо, мой рассказ о тестировании гипотез произвел впечатление.

<p><strong>Как управлять романтиками</strong></p>

Идеальный менеджер в моем представлении:

• идет напрямую к цели;

• относится человечно к людям;

• делает из любого хаоса, даже творческого, рутину;

• удовлетворяет страсть сотрудников к интересным и развивающим задачам.

На последнем пункте я бы хотел остановиться подробнее. В прошлой главе я описал конфликт исследователя и бизнеса: исследователь хочет сделать что-то значимое, используя самые последние разработки ML, бизнесу часто это не нужно. Как этим можно управлять? В нашей работе аналитиков и инженеров машинного обучения создание алгоритма занимает 5–10 % времени, а остальные 90 % уходят на то, чтобы заставить новый алгоритм приносить прибыль. Этот конфликт – основная причина, по которой я терял сотрудников.

Консервативный бизнес не хочет оплачивать дорогостоящие исследования с непонятным результатом. Чем крупнее компания, тем ей проще это делать; в больших компаниях есть даже такая должность – инженер по исследованиям (research scientist). Но с ними другая проблема – наука есть, а жизни нет: не видят исследователи реального применения, и это их демотивирует. Поэтому важно найти баланс. Обсудим роль менеджера аналитики в его достижении.

Как известно, бизнес должен быть устойчивым по отношению к персоналу. Эта устойчивость достигается автоматизацией, «автобусным» числом, построенными процессами – когда все творческое, хаотическое оборачивается в процессы и становится рутиной. Когда я пишу эти строки, представляю сборочный конвейер, у которого нет души, а люди подходят и на разных этапах крутят разные гайки. Все задачи максимально приземленные. И вот когда все отлажено до состояния идеально смазанной машины, нужно впускать в поток интересные для ваших сотрудников задачи. Мне лично всегда очень непросто их найти. Требования к ним я бы предъявил следующие:

Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес