Читаем Разум, машины и математика полностью

Значительное неудобство этого метода по сравнению с классическими подходами состоит в том, что нейронная сеть должна пройти длительное обучение, сравнимое с обучением человека, который в детстве учится ходить. Для человека, уже овладевшего этим навыком, не представляет трудности решать на каждом шаге сложные физические уравнения кинематики и переставлять ноги, не теряя равновесия.

При классическом обучении нейронных сетей с обратным распространением ошибки вновь и вновь рассматриваются десятки тысяч примеров и сотни тысяч возможных траекторий. И для каждой из рассматриваемых траекторий нейронная сеть обучается приводить в действие различные моторы, чтобы робот переместился из начальной точки в конечную.

После завершения обучения нейронной сети говорят, что она усвоила сенсомоторную карту. В результате центр управления роботом может с высочайшей точностью решать задачи инверсной кинематики всего за несколько миллисекунд.

Мозг усложняется

Успехи в использовании нейронных сетей привели к тому, что уже в XXI веке они стали стандартным инструментом решения множества задач. Однако нейронные сети обладают серьезными недостатками.

Первый из них — переобучение. Второй — большое число параметров, значения которых следует задавать вручную, случайным образом, до начала обучения нейронной сети. Здесь основная проблема заключается в том, что не существует каких-либо руководств и методик, описывающих, как именно следует задавать значения параметров. В результате на решение этой задачи приходится тратить значительные человеческие и технические ресурсы и в большинстве случаев прибегать к старому проверенному методу проб и ошибок. Третий недостаток, носящий скорее философский, нежели практический характер, заключается в том, что мы не понимаем, как именно рассуждает обученная нейронная сеть. Этому не придавалось особого значения до тех пор, пока нейронные сети не стали в полной мере применяться для решения реальных задач. Если мы, к примеру, используем нейронную сеть для контроля антиблокировочной системы автомобиля (ABS), то вполне логично, что инженеры хотят до мельчайших подробностей понимать, как рассуждает нейронная сеть, — только так они могут быть уверены, что тормоза не откажут ни в одной из многих тысяч возможных ситуаций.

Нейронная сеть формулирует прогнозы, однако неизвестно, как именно она при этом рассуждает. Некоторые сравнивают нейронные сети с магическим кристаллом.

С конца 90-х годов многие специалисты по теории вычислений интенсивно работают над созданием новых вычислительных методов, которые позволят устранить эти недостатки или хотя бы снизить их негативный эффект. Окончательное решение в начале XXI века предложила группа под руководством Владимира Вапника из знаменитой компании AT&T Bell Labs, специализирующейся на телекоммуникациях и производстве электроники. Вапник разработал метод опорных векторов (англ. SVM — Support Vector Machine), при котором для решения линейно неразделимых задач вводятся новые, искусственные измерения, позволяющие преобразовать исходную задачу в линейно разделимую.

Метод опорных векторов лишен большинства недостатков нейронных сетей, поэтому сегодня он пришел им на смену практически во всех областях компьютерных технологий. Тем не менее нейронные сети до сих пор используются в промышленности, в частности в робототехнике, благодаря простой аппаратной реализации.

Нужны ли экзамены?

Как вы уже знаете, машинное обучение может применяться во всех областях науки и техники. Но можно ли пойти дальше и применить его в образовании? Как преподаватель определяет уровень знаний учеников? Можно ли автоматизировать некоторые субъективные критерии, которые используют школьные учителя и университетские преподаватели для оценки знаний учащихся? Можно ли спрогнозировать уровень знаний ученика, не проводя экзаменов? На все эти вопросы поможет ответить дерево принятия решений.

Исчезнет ли подобная картина в будущем? Этого наверняка хотят многие студенты.

Деревья принятия решений крайне просты, но очень эффективны для распознавания образов. Они позволяют выяснить, какие переменные играют определяющее значение при отнесении выборки к тому или иному классу. Рассмотрим пример. Допустим, что мы хотим спрогнозировать оценки студентов и располагаем следующими исходными данными.

Хорошее дерево принятия решений, составленное с учетом этих данных, может выглядеть следующим образом.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное