Читаем Разум, машины и математика полностью

ЛИНЕЙНАЯ НЕРАЗДЕЛИМОСТЬ

Рассмотрим ситуацию, когда выборки могут принадлежать к одной из двух категорий, каждая из которых описывается двумя дескрипторами (следовательно, двумя входными значениями).

Нарисуем график для восьми выборок.

На этом графике кругами белого цвета отмечены выборки категории А, черными — выборки категории В. Нетрудно провести линию, разделяющую категории, — именно эту операцию проводит перцептрон при корректировке порогового значения и весов входных значений. Но что произойдет, если мы рассмотрим синтетическую задачу, предметом которой является операция XOR? XOR — это логическая операция, соответствующая исключающему «или», которая описывается следующим соотношением:

Теперь график будет выглядеть так:

Теперь уже нельзя провести линию, отделяющую белые круги от черных, следовательно, эта задача является линейно неразделимой. Перцептрон нельзя корректно обучить для решения такой простой логической задачи, как задача XOR.

* * *

Решение проблемы линейной неразделимости было найдено в конце 80-х годов.

Оно было столь очевидным и естественным, что даже странно, почему никто не додумался до него раньше. Решение нашла сама природа еще несколько миллионов лет назад: достаточно связать между собой различные перцептроны, сформировав так называемую нейронную сеть.

На следующем рисунке изображена нейронная сеть, состоящая из трех слоев нейронов: первый слой — входной, второй — скрытый, третий и последний — выходной. Эта нейронная сеть называется сетью прямого распространения, так как поток данных в ней всегда направлен слева направо, а синапсы не образуют циклов.

Нейронная сеть может быть сколь угодно сложной, иметь произвольное число скрытых слоев и, кроме того, содержать связи, которые идут в обратном направлении и тем самым моделируют некую разновидность памяти. Ученые построили нейронные сети, содержащие до 300 тысяч нейронов — столько, сколько содержит нервная система земляного червя.

В нейронной сети процесс обучения усложняется, поэтому инженеры разработали множество методов обучения. Один из самых простых — метод обратного распространения ошибки, давший название отдельной разновидности нейронных сетей, в которой он используется. Суть этого метода состоит в снижении ошибки выходного значения нейронной сети путем корректировки весов входных значений синапсов в направлении справа налево по методу градиентного спуска. Иными словами, сначала весам всех синапсов нейронной сети присваиваются произвольные значения, после чего на вход сети подается выборка, выходное значение для которой известно (такая выборка называется обучающей). Как и следовало ожидать, в этом случае выходное значение будет случайным. Далее, начиная с нейронов, близких к выходу, и заканчивая нейронами входного слоя, начинается корректировка весов связей.

Цель этой корректировки — приблизить выходное значение нейронной сети к реальному известному значению.

Эта процедура повторяется несколько сотен или тысяч раз для всех обучающих выборок. Когда обучение для всех выборок завершено, говорят, что прошла эпоха обучения. Далее процесс обучения может быть повторен на протяжении еще одной эпохи для тех же обучающих выборок. Как правило, при обучении рассматривается несколько десятков выборок. Этот процесс подобен реальному обучению, когда человек вновь и вновь видит одни и те же данные.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги