Читаем Разработка ядра Linux полностью

Не только в операционной системе Linux, но и в других операционных системах обработка аппаратных прерываний разделяется на две части. Верхняя половина выполняется быстро, когда все или некоторые прерывания запрещены. Нижняя половина (если она реализована) выполняется позже, когда все прерывания разрешены. Это решение позволяет поддерживать малое время реакции системы, благодаря тому что работа при запрещенных прерываниях выполняется в течение возможно малого периода времени.

<p>Многообразие нижних половин</p>

В отличие от обработчиков верхних половин, которые могут быть реализованы только в самих обработчиках прерываний, для реализации обработчиков нижних половин существует несколько механизмов. Эти механизмы представляют собой различные интерфейсы и подсистемы, которые позволяют пользователю реализовать обработку нижних половин. В предыдущей главе мы рассмотрели единственный существующий механизм реализации обработчиков прерываний, а в этой главе рассмотрим несколько методов реализации обработчиков нижних половин. На самом деле за историю операционной системы Linux существовало много механизмов обработки нижних половин. Иногда сбивает с толку то, что эти механизмы имеют очень схожие или очень неудачные названия. Для того чтобы придумывать названия механизмам обработки нижних половин, необходимы "специальные программисты".

В этой главе мы рассмотрим принципы работы и реализацию механизмов обработки нижних половин, которые существуют в ядрах операционной системы Linux серии 2.6. Также будет рассмотрено, как использовать эти механизмы в коде ядра, который вы можете написать. Старые и давно изъятые из употребления механизмы обработки нижних половин представляют собой историческую ценность, поэтому, где это важно, о них также будет рассказано.

В самом начале своего существования операционная система Linux предоставляла единственный механизм для обработки нижних половин, который так и назывался "нижние половины" ("bottom half"). Это название было понятно, так как существовало только одно средство для выполнения отложенной обработки. Соответствующая инфраструктура называлась "BH" и мы ее так дальше и будем назвать, чтобы избежать путаницы с общим термином "bottom half (нижняя половина). Интерфейс BH был очень простым, как и большинство вещей в те старые добрые времена. Он предоставлял статический список из 32 обработчиков нижних половин. Обработчик верхней половины должен был отметить какой из обработчиков нижних половин должен выполняться путем установки соответствующего бита в 32-разрядном целом числе. Выполнение каждого обработчика BH синхронизировалось глобально, т.е. никакие два обработчика не могли выполняться одновременно, даже на разных процессорах. Такой механизм был простым в использовании, хотя и не гибким; простым в реализации, хотя представлял собой узкое место в плане производительности.

Позже разработчики ядра предложили механизм очередей заданий (task queue) — одновременно как средство выполнения отложенной обработки и как замена для механизма BH. В ядре определялось семейство очередей. Каждая очередь содержала связанный список функций, которые должны были выполнять соответствующие действия. Функции, стоящие в очереди, выполнялись в определенные моменты времени, в зависимости от того, в какой очереди они находились. Драйверы могли регистрировать собственные обработчики нижних половин в соответствующих очередях. Этот механизм работал достаточно хорошо, но он был не настолько гибким, чтобы полностью заменить интерфейс BH. Кроме того, он был достаточно "тяжеловесным" для обеспечения высокой производительности критичных к этому систем, таких как сетевая подсистема.

Во время разработки серии ядер 2.3 разработчики ядра предложили механизм отложенных прерываний[34] (softirq) и механизм тасклетов (tasklet).

За исключением решения проблемы совместимости с существующими драйверами, механизмы отложенных прерываний и тасклетов были в состоянии полностью заменить интерфейс BH[35].

Отложенные прерывания — это набор из 32 статически определенных обработчиков нижних половин, которые могут одновременно выполняться на разных процессорах, даже два обработчика одного типа могут выполняться параллельно. Тасклеты — это гибкие, динамически создаваемые обработчики нижних половин, которые являются надстройкой над механизмом отложенных прерываний и имеют ужасное название, смущающее всех[36].

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT