Читаем Разберись в Data Science полностью

Отказ от постановки острых вопросов (или решение неправильной задачи). Даже небольшая двусмысленность может привести к путанице и рассогласованию между группой специалистов по работе с данными, бизнес-группой и заинтересованными сторонами проекта. Убедитесь в том, что все четко понимают решаемую бизнес-задачу (глава 1).

Вопрос не адаптируется после провала. Прояснить бизнес-задачу важно – как и быстро признать то, что ее нельзя решить. Многие команды специалистов по работе с данными быстро обнаруживают недостатки исходного вопроса, но продолжают двигаться вперед, подчиняясь внешнему давлению. Чтобы избежать возникновения несоответствий, вопрос необходимо скорректировать.

Данными владеют, а не управляют (то есть данные трудно получить). В некоторых организациях определенные группы (например, ИТ-отдел, финансовый отдел или бухгалтерия) владеют данными, которые требуются вам для работы. Хотя многие из этих организаций практикуют управление данными на бумаге, получить к ним доступ бывает непросто. Ваша компания должна понимать, что при ограничении доступа к данным вы можете сделать не так много.

Данные не содержат необходимой информации. Данные могут быть легко доступными и «опрятными», но они могут не содержать информацию, необходимую для решения поставленной задачи. Если данные не содержат нужной вам информации, постарайтесь собрать более качественные данные.

Отказ от использования недорогих инструментов и технологий с открытым исходным кодом. Прежде чем взяться за реализацию масштабного проекта, связанного с внедрением какой-либо новой технологии, потратьте время на прототипирование. Вполне возможно, что инвестирование в платформу обработки данных для управления будущими операциями изменит очень многое для вашей команды. Однако прежде чем тратить деньги, попробуйте создать минимально жизнеспособный продукт с помощью Microsoft Excel или таких бесплатных технологий с открытым исходным кодом, как R или Python.

Слишком оптимистичные сроки. Проекты по работе с данными часто проваливаются совершенно неожиданным образом. Описанные выше проблемы обнаруживаются только через несколько недель после запуска проекта, а жесткие сроки приводят к срезанию углов и плохому анализу. Сроки реализации проекта должны учитывать неизбежные задержки при работе с данными.

Завышенные ожидания относительно ценности. Компании привыкли многого ожидать от науки о данных, статистики и машинного обучения. Говорите о ценности, которую может принести ваш проект, открыто, но не преувеличивайте ее, чтобы не вызвать отрицательную реакцию; она может негативно сказаться на текущих и будущих проектах.

Ожидание предсказания непредсказуемого. Некоторые вещи невозможно предсказать вне зависимости от количества собранных исторических данных. Документирование каждого вращения каждого колеса рулетки в Лас-Вегасе не поможет вам предсказать результат следующего вращения.

Выход за рамки разумного. Как и вы, авторы этой книги любят работать с данными. Многие из нас готовы ухватиться за очередную идею. Однако очень часто из виду упускается нечто совершенно очевидное: наука о данных, статистика, машинное обучение и ИИ могут решить многие важные проблемы, но далеко не все. При работе с данными, статистикой и алгоритмами нередко можно выйти за рамки разумного. Вы можете задействовать алгоритм классификации для определения бизнес-правил. Однако иногда у нас уже есть набор правил, в соответствии с которыми мы действуем. В таких случаях будет гораздо проще, если окружающие вас люди просто запишут их. По сути, если ваша команда может написать бизнес-правила для автоматизации процесса, то вашу работу можно считать выполненной. В настоящее время эта идея теряется на фоне шумихи вокруг науки о данных. Машинное обучение кажется привлекательным для руководства, но иногда оно – просто излишество.

Перейти на страницу:

Все книги серии Мировой компьютерный бестселлер

Похожие книги

1С: Бухгалтерия 8 с нуля
1С: Бухгалтерия 8 с нуля

Книга содержит полное описание приемов и методов работы с программой 1С:Бухгалтерия 8. Рассматривается автоматизация всех основных участков бухгалтерии: учет наличных и безналичных денежных средств, основных средств и НМА, прихода и расхода товарно-материальных ценностей, зарплаты, производства. Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, проводить их по учету, формировать разнообразные отчеты, выводить данные на печать, настраивать программу и использовать ее сервисные функции. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов.Для широкого круга пользователей.

Алексей Анатольевич Гладкий

Программирование, программы, базы данных / Программное обеспечение / Бухучет и аудит / Финансы и бизнес / Книги по IT / Словари и Энциклопедии
1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных