Талантливая студентка, изучавшая сложные технические концепции в университете на протяжении последних пяти лет, работает над своим первым крупным проектом в маркетинговой фирме. За день до представления результатов ее менеджер предлагает ей представить результаты проведенного анализа в виде «истории» и сократить ее содержание до одного слайда PowerPoint.
«С ними надо говорить, как с пятиклассниками», – заявляет менеджер.
Она неохотно соглашается, хотя знает, что в аудитории будут ученые. Она считает, что презентация уже была достаточно сокращена. Кроме того, она проверила понятность своего выступления на технически не подкованных коллегах.
«Поверь мне, – говорит менеджер, – тебе не нужно, чтобы эта группа задавала какие-либо вопросы». Из-за отбрасывания большинства технических деталей и критических рассуждений результаты работы сводятся к простому заголовку.
Во время представления результатов в ходе презентации большинство зрителей кивает. Некоторые задаются вопросом: «Нам действительно нужны дата-сайентисты, находящие простые ответы?»[150] Другие зрители, обладающие некоторыми техническими знаниями, недоумевают, почему были проигнорированы технические аспекты проекта.
Обдумывая свою презентацию, студентка понимает, что многие нюансы были потеряны, – и чувствует, что в некотором смысле она предала свою исходную работу.
Во время случайной встречи за чашкой кофе дата-сайентист рассказывает своему коллеге об интересном факте, обнаруженном в данных компании. У нее еще не было возможности разобраться во всем как следует, но беглый обзор показал, что 75 % участников опроса заявили о своем намерении стать постоянными клиентами.
После встречи дата-сайентист возвращается к своему столу и снова просматривает результаты анализа. Она еще раз видит показатель 75 % и понимает, что в опросе приняли участие всего 8 человек из нескольких сотен. Затем она выясняет, что соответствующий вопрос был добавлен в анкету совсем недавно, так что ни один из тех людей, которые высказали намерение стать постоянными клиентами, еще не стал таковым.
Месяц спустя на общем собрании компании руководители хвастаются своими успехами в деле удержания клиентов. Они говорят о том, что 3 из 4 клиентов стали постоянными, судя по результатам опроса сотен людей.
Дата-сайентист понимает, что этот факт был озвучен во время случайной встречи за чашкой кофе и никогда не должен был распространяться без проверки. К этому моменту он повторялся в компании так много раз, что стал восприниматься как нечто самоочевидное. Дата-сайентист задается вопросом о том, можно ли как-то остановить его использование в компании – и стоит ли вообще это делать.
Дата-сайентист применяет подходящие методы для решения сложной проблемы и, по общему мнению, отвечает на поставленные бизнес-вопросы. Но его итоговая презентация для проектной группы оказывается слишком технической. Он не предпринял практически никаких усилий для того, чтобы значимым образом связать полученные результаты с ценностью для бизнеса.
Пытаясь добиться признания в качестве уважаемого технического эксперта, он излишне увлекается технической терминологией, и хотя заинтересованные стороны считают результаты его работы впечатляющими, они покидают зал без четкого представления о том, что делать дальше. По их мнению, проект нельзя считать завершенным из-за того, что он не был представлен понятно.
Проблема превращается в порочный круг: специалиста по работе с данными просят разработать лучшее решение для завершения проекта. Дата-сайентист углубляется в дебри…
Дата-сайентист проводит анализ рынка, но разработанное им решение не может быть реализовано в качестве рыночной стратегии, так как оно оторвано от того, как работает бизнес. Если бы в распоряжении компании было бесконечное количество качественных данных, средств и времени, это было бы отличным решением! Однако в действительности это отличное решение идеальной проблемы, а не той, которая на самом деле стоит перед бизнесом.
Но дата-сайентист непреклонен. Он хочет реализовать это решение «правильным» (то есть своим) способом. Он высокомерно заявляет своим коллегам по бизнесу, что они должны придумать, как это сделать. Наконец вмешивается старший партнер и говорит, что проект будет свернут, если они не смогут проложить путь по текущей траектории.
«Что еще мы можем сделать?» – спрашивает старший партнер. (До сих пор никто не задавал этот вопрос.)
После этого команда находит способ, выигрышный для всех.
После многолетнего взаимодействия с клиентами в страховой отрасли команда проекта привлекает дата-сайентиста для анализа данных о клиентах, накопившихся за многие годы. Этот специалист недавно был повышен до старшего дата-сайентиста, и новое звание вскружило ему голову.