Другой элемент обратной связи — контроль образования пептида со стороны автореплицирующейся молекулы. Можно предположить, что аминокислотная последовательность пептида определялась прилегавшими друг к другу элементами автореплицирующейся молекулы, которые связывали и определенным образом ориентировали соответствовавшие им аминокислоты (применительно к РНК см. Раздел 3.2). В образовании связей между аминокислотами могли участвовать элементы тех же автореплицирующихся молекул. Это предположение основывается на недавно подтвержденных данных, свидетельствующих, что в современном мире, в котором, казалось бы, безраздельно господствуют ферменты белковой природы, роль фермента, осуществляющего в рибосоме присоединение очередной аминокислоты к концу растущей белковой цепи, выполняет элемент рибосомной РНК (Nissen et al. 2000). Эти экспериментальные данные, полученные на РНК, косвенно подтверждают предположение, что способностью контролировать аминокислотную последовательность и сам синтез пептидов могли обладать и более ранние, не дошедшие до нас, автореплицирующиеся молекулы.
В последние годы как модели ранней (неферментной) авторепликации нуклеиновых кислот рассматриваются различные матричные конструкции, химические катализаторы и т. д. В экспериментах по неферментной авторепликации нуклеиновых кислот, как и в биологических системах, используется принцип комплементарности. Экспериментально было установлено, что короткие фрагменты однонитевой ДНК могут ассоциировать с соответствующими им (гомологичными) участками биспиральной ДНК. В образовавшейся прерывной тройной спирали примыкающие друг к другу фрагменты могут быть воссоединены (легированы) с помощью N-цианимидазола. Аналогичным образом могут быть воссоединены фрагменты, находящиеся в составе прерывной биспирали (Li and Nicolaou, 1994; Sievers and von Kiedrovski, 1994; Luther et al., 1998). Отметим, однако, что от воссоединения фрагментов до реального синтеза комплементарной нити ДНК или другой автореплицирующейся молекулы из мономерных предшественников еще далеко. Тем не менее, механизм формирования протяженных цепных молекул путем скрепления коротких фрагментов мог быть полезным в добиологические времена и в ранних клетках при условии осуществления химического синтеза коротких фрагментов из мономеров (Sievers and von Kiedrovski, 1994; Luther et al., 2001). Сшивка фрагментов на матрицах позволяла ступенчато наращивать длину цепных молекул до размеров, позволявших молекулам выполнять их функции (в данном случае, информационные). Фактически, этот процесс можно рассматривать как самую раннюю и, естественно, примитивную форму генетической рекомбинации (Lehman, 2003). Механизм ступенчатого наращивания пептида путем соединения коротких цепочек на белковой же матрице также мог иметь место (Lee et al., 1996; Yao et al., 1998; Paul and Joyce, 2004). Образование примитивных клеток сделало автореплицирующиеся молекулы, а следовательно, и заключавшие их клетки предметами Дарвиновского отбора.
Идея о возможности неферментной авторепликации нуклеиновых кислот привела некоторых авторов к выводу о вторичности белков. Высказано предположение, что в РНК мире белков еще не было. Однако учитывая, что белки, как и нуклеиновые кислоты (скорее, аналоги нуклеиновых кислот), могли быть образованы в ходе химической эволюции, их участие в предбиологических и раннебиологических синтетических процессах представляется весьма вероятным.