Существует два основных подхода к построению статистической классификации при незаданных классах. Первый из них носит название кластерного анализа. Этот вид анализа построен на оценке близости элементов исходного множества. Сразу оговоримся, что статистический анализ может быть использован и используется не только для классификации множества исследуемых свойств, но и для классификации испытуемых.
Для разбиения исходного множества на классы необходимо выбрать меру близости элементов. Выбор меры может быть различным в зависимости от специфики исследования. Ее можно задать системой функций
Вторым подходом к классификации является факторный анализ, который основан на анализе матрицы связей переменных (ковариационной матрицы). В настоящее время наиболее подробно разработана линейная модель факторного анализа. Подробнее с техникой факторного анализа можно ознакомиться у Брунера, 1971.
Для проведения статистического анализа данных исследователь вводит в память ПЭВМ матрицу первичных данных, элементами которой являются оценки испытуемых по всем переменным измерительным методам.
3.3. Интерпретация результатов статистического анализа
В случае использования кластерного (или какой-то его разновидности, например, таксономического) анализа для классификации испытуемых исследователь после машинной обработки данных получает распечатку, где тем или иным способом указано число определенных классов и принадлежность каждого из испытуемых к тому или иному классу. Испытуемые, отнесенные к разным классам, различаются между собой по набору исследуемых свойств. Таким образом, интерпретация результатов основана на уяснении того, какими свойствами обладают представители каждого класса. Рекомендуется специально составить списки свойств, характеризующие каждый выделенный класс. Далее каждый такой список можно озаглавить либо посредством указания какого-то обобщающего свойства, либо посредством выбора из списка наиболее представительного свойства, например, наиболее сильно выраженного у всех испытуемых данного класса.
Приведем пример использования таксономического анализа в психологии. В исследовании, проведенном под руководством В.С. Мерлина (Басырова, 1965), для классификации испытуемых использовался ряд психофизиологических и психических свойств человека, таких, как свойства нервной системы, некоторые особенности восприятия, экстравертированность (направленность на общение), и др. В результате было выделено два класса испытуемых, по мысли авторов обладающих соответственно двумя различными типами темперамента. Таким образом, исходный набор свойств был обобщен в понятии «тип темперамента». Далее, основываясь на том, что выборка испытуемых была достаточно велика, авторы сделали вывод о структуре исследуемого свойства в целом, а именно о том, что существует всего два типа темперамента. Обратимся теперь к интерпретации результатов факторного анализа. После машинной обработки данных исследователь располагает распечаткой корреляционной и факторной матриц. Хотя корреляционный анализ (анализ матрицы корреляционных связей исходных свойств) в строгой смысле не является частью факторного анализа, однако, очевидно, по причине пересечения процедур расчета, существуют единые программы машинной обработки данных, включающие и корреляционный и факторный анализ.
Корреляционная матрица представляет собой таблицу коэффициентов корреляции признаков (свойств). Количество коэффициентов корреляции, подлежащих интерпретации, можно рассчитать, исходя из числа признаков, по формуле, приведенной в п. П.3. Если в распечатке корреляционная матрица приведена полностью, то анализировать следует либо ее верхнюю, либо нижнюю часть по отношению к единичной диагонали. После того как выделен нужный кусок матрицы, следует обратиться к таблицам значимости для коэффициента линейной корреляции (см., напр.: Валлон, 1967) и установить критическое значение коэффициента для имеющегося числа степеней свободы, т. е. для того количества испытуемых, которые участвовали в эксперименте.