Этот план может быть использован при проведении основного эксперимента. В этом случае на выходе исследователь имеет четыре матрицы первичных данных, которые характеризуют начальные и конечные состояния обеих групп. Следует, однако, помнить, что данный план позволяет лишь уравнять все побочные влияния для обеих групп, т. е. обеспечивает одинаковое смещение всех экспериментальных оценок, но не позволяет узнать, каково это смещение. Такой план, следовательно, представляется удовлетворительным всегда, когда измерения производятся в интервальных шкалах. В этом случае мы можем увеличить или уменьшить все оценки на постоянную величину, не потеряв при этом никакой информации. Если же измерение каких-то показателей производилось в шкале отношений, и это важно для исследователя, то для уверенности в том, что результаты измерения не искажены побочными влияниями, следует использовать более сложный план. Таким планом может служить план Соломона, названный по имени исследователя, предложившего его. Схема этого плана такова:
Т – Гэ —Dэ Т – Гк – Dк Т – Гэ1 —Dэ1
Т – Гэ – Dэ Т – Гк – Dк Т – Гк1 – Dк1
Верхние индексы
1)
Пусть
2)
Если выполнены оба условия, то можно утверждать, что экспериментальный план согласован с измерением в шкале отношений и все побочные влияния на исследуемую переменную устранены.
Если второе условие не выполнено (но выполнено первое), т. е.
Если не выполнено и первое условие, то пропорциональность шкалы нарушается, если, однако,
В начале параграфа несколько слов о том, зачем нужна обработка данных на ЭВМ. Необходимость такой обработки обусловлена сложностью предмета современного психолого-педагогического исследования. Множественность составляющих его отношений делает невозможным их количественное сравнение без ЭВМ, в силу естественных временных ограничений человеческой деятельности. Но дело не только в этом. Сложность предмета исследования стимулировала разработку адекватных этой сложности методов количественного представления данных, которые в силу исторических причин оказались неразрывно связанными с электронно-вычислительной техникой. В настоящее время не представляется возможным проведение того или иного вида статистического анализа даже для небольшого числа измерений без использования ЭВМ.
Задачей статистического анализа является представление исследуемого сложного отношения как некоторого фактор-множества, т. е. как множества непересекающихся классов. Что позволяет исследователю сделать важный шаг на пути к искомому обобщению. Действительно, исследование начинается с того, что исследователь определяет множество интересующих его отношений, пересечение которых представляет собой сложное и неизвестное еще новое отношение. В процессе пилотажного исследования выясняется, что некоторые составляющие свойства связаны между собой, однако в силу их множественности восстановить всю структуру связей и перейти к обобщению не представляется возможным. С помощью специальных методов существует возможность отобразить все множество исследуемых свойств в небольшое число классов. Далее либо посредством обобщения всего класса свойств, либо посредством выбора некоторого (центрального) представителя класса он может быть отождествлен с некоторым более сложным свойством, множество же классов определяет структуру всего исследуемого отношения.