Пространство непрерывных функций. Для построения этого пространства на числовой оси выделяется некоторый отрезок. В множестве функций непрерывных на этом отрезке операции сложения и умножения на число задаются так, как это принято в математическом анализе (см.: Валлон, 1967). Это пространство используется в математической теории тестов, а также для моделирования отдельных психологических процессов и явлений (Ананьев, Дворяшина, Кудрявцева, 1968). Для нас будут важны следующие два свойства пространства непрерывных функций:
1. Если часть системы функций линейно зависима, то и вся система линейно зависима. Для доказательства нужно записать линейную комбинацию той части системы, которая является линейно зависимой: αа + βв = 0. Далее мы хотим приписать к этой нетривиальной линейной комбинации все остальные элементы системы с коэффициентами нуль и получим вновь нетривиальную линейную комбинацию, но уже для всей системы:
2. Если вся система линейно независима, то и любая ее часть линейно независима.
В дальнейшем нас будут интересовать только те случаи, когда максимальное число линейно независимых элементов линейного пространства конечно. Такие линейные пространства называются конечномерными. Дадим следующее определение: линейно независимая система элементов, через которые линейно выражается каждый элемент линейного пространства, называется базисом пространства. Число элементов базиса называется размерностью линейного пространства. Размерность пространства
Линейную комбинацию (22) называют разложением элемента
Вычтем из первого равенства второе:
В силу того, что элементы базиса линейно независимы, то из равенства их линейной комбинации нулю следует равенство нулю всех коэффициентов в равенстве (23), а, следовательно, коэффициенты в разложениях (23) равны, и разложение элемента
Вернемся к примеру координатного пространства как модели психологического теста в его статическом понимании. Мы можем рассматривать пункты теста как элементы базиса линейного пространства. Ответы испытуемого выступают в этом случае как координаты. Очевидный смысл приобретает в этом случае и сумма координат как интегральный результат тестирования. Зададимся, однако, вопросом: всегда ли число тестовых пунктов равно размерности «пространства теста»? Представим себе, что на каких-то два тестовых пункта все испытуемые данной группы ответили совершенно одинаково. Составим матрицу первичных данных, где по строкам написаны ответы испытуемых на тот или иной тестовый пункт, а по столбцам – результаты применения тестовых пунктов к тому или иному испытуемому. Ясно, что в указанном случае в матрице первичных данных будут иметь место два совершенно одинаковых столбца. Очевидно, что столбцы матрицы так же, как и строки, могут быть рассмотрены как элементы некоторого (но не одного и того же) линейного пространства. Размерность этого пространства будет равна максимальному числу линейно независимых столбцов матрицы. Обозначим число столбцов матрицы