Читаем Радиоэлектроника для начинающих (и не только) полностью

Чтобы изменение нагрузки (изменение силы тока) меньше влияло на выходное напряжение источника, его внутреннее сопротивление стараются свести к минимуму.

Напряжение батарейки уменьшается и при ее старении, так как со временем увеличивается ее внутреннее сопротивление.

Закон Ома для полной цепи (с учетом внутреннего сопротивления источника) запишется так (рис. 2.14,б):

I = Е/(R + r). (2.1,б)

Здесь Е — э.д.с. источника питания; R — сопротивление нагрузки; r — внутреннее сопротивление источника питания.

В практике вам часто придется иметь дело с проводами при изготовлении трансформаторов, катушек индуктивности и в других случаях. Сопротивление провода вычисляется по формуле:

R = ρ∙I/S (2.4)

Здесь R — сопротивление провода в омах (Ом), I — его длина в метрах (м), S — площадь поперечного сечения в квадратных миллиметрах (мм2).

S = 1,57∙d2

где d — диаметр провода в миллиметрах (мм); ρ — коэффициент пропорциональности, зависящий от рода материала, называется удельным сопротивлением материала, измеряется в омах, умноженных на метр (Ом∙м). Его значения для различных материалов приведены в таблице ПЗ. Приложения.

• Решим еще пример. Какой площади сечения S1 нужно взять алюминиевую проволоку, чтобы ее сопротивление R1 было такое же, как у железной проволоки (R2) сечением S2 = 2 мм2? Длина обеих проволок одинакова (l1 = l2).

Запишем исходные условия по другому.

Дано: R1 = ρ1l1/S1R2 = ρ2l2/S2. По условию задачи: R1R2 = R; l1 = l2 = l; S1 = 2 мм2.

Из таблицы ПЗ Приложения:

ρ1 = 2,5∙10-8 Ом∙м; ρ2 = 12∙10-8 Ом∙м.

Определить S1.

Тогда ρ1l1/S1ρ2l2/S2. Отсюда:

S1 = S1 = r1S2/ρ2 = 2,5∙10-8 = 0,41 мм2. Ответ: S1 = 0,41 мм2.

Вернитесь еще раз к формуле (2.4) и запомните размерность величин, которые должны подставляться в формулу.

На рис. 2.15 приведена номограмма для расчета сопротивления проводов с высоким удельным сопротивлением. Приведен пример (пунктирная линия) определения сопротивления манганинового провода диаметром 0,22 мм. Оно равно 3 Ом на каждый метр.

Рис. 2.15.Номограмма для расчёта сопротивления проводов с большим удельным сопротивлением

Известно, что при повышении температуры сопротивление металлов увеличивается. У некоторых металлов это увеличение значительно: у чистых металлов оно достигает 40…50 %. Такие сплавы, как константан и манганин имеют очень малое изменение сопротивления от температуры. Зависимость сопротивления металлов от температуры используется для устройства термометров сопротивления. Его (термометр из металла) помещают внутрь, например, печи, а концы обмотки включают в электрическую цепь.

Измеряя сопротивление обмотки, можно определить температуру в печи (рис. 2.16,а). Такие термометры часто применяются для измерения очень высоких и очень низких температур, при которых ртутные термометры уже неприменимы.

Рис. 2.16. а) Термометр сопротивления, который позволяет измерять высокие и низкие температуры

В настоящее время очень широкое распространение получили полупроводниковые термометры, у которых температурный коэффициент сопротивления в 10–20 раз больше, чем у проволочных термометров.

Если сопротивление проводника при температуре t1 равно R1, а при температуре t2 равно R2, то среднее значение температурного коэффициента сопротивления (в интервале от 0 до 100 °C):

αср = (RtR0)/R0(tt0). (2.5)

Обычно в качестве R0 принимают сопротивление при температуре t0 = 0 °C.

• Решим пример. Сопротивление нити накала выключенной электрической лампочки накаливания с вольфрамовой нитью равно 60 Ом. При полном накале сопротивление лампочки возрастает до 636 Ом. Какова температура накаленной нити?

Воспользуемся таблицей ПЗ Приложения для нахождения αср. Так как t0 = 0 °C, то формула (2.5) запишется так:

αср = (RtR0)/R0t (2.5, а)

откуда t = (RtR0)/R0αср.

При изменении температуры в больших пределах сопротивление некоторых металлов также изменяется в больших пределах и нелинейно. На рис. 2.16,б изображена нелинейная вольт-амперная характеристика нити накала лампы накаливания.

Перейти на страницу:

Все книги серии "Солон-Р" - радиолюбителям

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника