В 1913 году молодой английский физик Мозли изучал рентгеновские спектры элементов. Ему удалось установить любопытную закономерность: с помощью длины волны рентгеновского излучения того или иного элемента можно определить порядковый номер его в таблице Менделеева. Тем самым менделеевское расположение элементов в системе было подтверждено физикой. Периодический закон получил новый смысл: в основу закона Менделеева лег порядковый номер элемента, равный заряду ядра его атома, а не атомный вес, как прежде.
После открытия Мозли стало ясно, что химики в целом совершенно правильно составили ряд редкоземельных элементов. Их оказалось четырнадцать — от лантана до лютеция. Кроме того, в списке элементов было обнаружено два «пробела», соответствовавших двум не открытым еще элементам. Один из них, с порядковым номером 61, располагался между неодимом и самарием; другой, 72, был тем самым элементом «налево от тантала», о котором говорил Браунер.
Но причина близости свойств редких земель оставалась неясной, равно как и их положение в периодической системе. Требовалось выяснить, относится ли семьдесят второй элемент к редкоземельным или нет. И, наконец, вызывало удивление, почему до сих пор не открыт элемент № 61.
Мы не будем касаться вопроса о шестьдесят первом: у него очень сложная и весьма своеобразная «биография»; читатель узнает о ней из очерка об искусственно полученных элементах.
Прежде всего нужно было выяснить природу семьдесят второго элемента. С равной вероятностью он мог быть аналогом циркония и членом редкоземельного семейства. Ученым предстояло уточнить, сколько же всего редкоземельных элементов: пятнадцать или шестнадцать?
Вернемся снова к периодической системе. Рассмотрим ее второй и третий периоды. Они начинаются соответственно со щелочных металлов лития и натрия, заканчиваются инертными газами — неоном и аргоном — и состоят каждый из восьми элементов. Резко, от элемента к элементу, меняются в этих периодах свойства.
Следующие, четвертый и пятый периоды состоят уже из 18 элементов каждый, и резкая разница в свойствах проявляется лишь у начальных и конечных элементов; в середине же она как бы сглаживается.
Когда Менделеев создавал свою таблицу, он мог лишь принять это явление как факт. Современное физическое обоснование периодической системы позволяет дать ему вполне определенное объяснение.
Вспомним один из основных постулатов химии: химические свойства элементов зависят от строения внешних электронных оболочек их атомов.
Вспомним далее, что согласно теории Бора заполнение электронных оболочек атомов происходит не в беспорядке, а в определенной последовательности. Каждая из них обладает определенной «емкостью». Так, в ближайшей к ядру
На первый взгляд может показаться, что заполнение этих оболочек происходит последовательно: «насытилась», скажем,
Физики выделяют в каждой оболочке, начиная с
Напомним теперь читателю, как происходит заполнение оболочек.
У элементов первого периода таблицы Менделеева заполняется
Здесь можно дать хорошую иллюстрацию того, как на протяжении длинных периодов таблицы Менделеева ход изменения свойств элементов становится иным, нежели в коротких периодах. В коротких (литий — неон, натрий — аргон) каждый элемент довольно резко отличается от своих ближайших соседей. Оно и понятно, так как внешняя электронная оболочка у элементов коротких периодов непрерывно меняется. В длинных же периодах, у