При
Известен вид радиоактивных превращений, называемый спонтанным делением. К нему «склонны» только очень тяжелые ядра, например тория и урана. Суть процесса заключается в самопроизвольном «раскалывании» ядра на две части. В результате образуются ядра элементов середины периодической системы.
Наконец, к последней группе превращений относится так называемый изомерный переход. Пояснить его можно так. Пусть у нас есть два совершенно одинаковых ядра. Равны их массы, равны их заряды. Но только одно ядро, как говорят физики, находится на более высоком энергетическом уровне, то есть у него имеется избыток энергии. Такие ядра называются изомерами. Чтобы перейти в свое нормальное, стабильное состояние, возбужденное ядро должно освободиться от избыточной энергии, что оно и делает, испуская гамма (γ) — лучи. Они представляют собой электромагнитное излучение с очень короткой длиной волны. При их испускании, как можно понять, не изменяются ни масса атома, ни его порядковый номер. Поскольку гамма-лучи не являются частицами вещества и электронейтральны, они слабо взаимодействуют с веществом, а потому и обладают очень большой проникающей способностью, какая недоступна альфа- и бета-частицам.
Таковы основные виды превращений ядер.
Атомы радиоактивных элементов не могут «жить» сколь угодно долго. Все они с течением времени претерпевают те или иные превращения. Но если «жизнь» атома ограничена во времени, значит можно говорить об их «времени распада». Ученые заметили, что если для наблюдения взять большое количество радиоактивного вещества, то за единицу времени распадется много атомов. Если же взять небольшое количество — число распадающихся атомов и интенсивность излучения пропорционально уменьшаются. Чем меньше радиоактивного вещества было взято, тем медленнее оно распадалось, но процент распадающихся атомов во всех случаях был одинаков. Этот «постоянный процент» носит название радиоактивной постоянной и обычно обозначается греческой буквой λ (ламбда). Наконец, каждый радиоактивный элемент распадается наполовину, сколько бы его ни было взято, за строго определенное время. Его называют периодом полураспада и обозначают
Периоды полураспада известных в настоящее время радиоактивных изотопов различны — от миллионных долей секунды до миллиардов лет. Так, период полураспада одного из изотопов радона равен 3,8 дня, а урана-238 составляет 4,5 миллиарда лет. Для многих радиоактивных изотопов период полураспада можно измерить непосредственно по уменьшению интенсивности его излучения.
Закон радиоактивного распада, хотя он и не очень сложен, выводится при помощи высшей математики. Однако, правда с меньшей точностью, его можно получить при помощи несложных алгебраических преобразований.
Пусть у нас в какой-то момент есть какое-то количество атомов радиоактивного элемента, равное
(
Скорость же распада, как было найдено учеными, пропорциональна числу атомов радиоактивного элемента, имевшемуся вначале, то есть
(
В этом уравнении λ — коэффициент пропорциональности, или, как мы уже знаем, доля атомов радиоактивного элемента, претерпевающих превращение в единицу времени. А теперь преобразуем наше уравнение:
Это и есть основной закон распада (в несколько упрощенном виде), которому подчиняются все радиоактивные элементы.
Здесь
Как же применить наше уравнение для практических целей? Давайте попробуем провести несложный расчет. Только для этого нам необходимо знать, что, как нашли ученые,
λ = 0,693/T½
Таким образом, зная период полураспада, мы легко можем определить радиоактивную постоянную.
А теперь давайте подсчитаем, сколько радиоактивного изотопа тория 23290Th распалось за все время существования нашей планеты. Примем, что возраст Земли равен 5 миллиардам лет, а период полураспада тория-232, как было установлено, равен 1,39·1010 лет. Для начала находим радиоактивную постоянную:
λ = 0,693/1,39·1010 = 0,5·10–10
Тогда произведение λ
0,5·10–10·5·109 = 0,25,
и, следовательно:
Это значит, что к настоящему времени осталось 75 процентов тория, а 25 процентов распалось за время жизни Земли.