Читаем Путешествие в Страну элементов полностью

Молодые ученые продолжают работу. В 1898 году они открывают сразу два новых элемента, которые способны испускать беккерелевы лучи, но эта способность у них примерно в миллион раз выше, чем у урана и тория. Один из элементов был назван полонием, в честь Польши — родины Марии Кюри, а второй — радием, от латинского слова «радиус», что значит «луч».

Способность веществ самопроизвольно испускать невидимые лучи супруги Кюри назвали радиоактивностью, а вещества, обладающие такой способностью, — радиоактивными.

Подробнее о радиоактивности

Суть этого явления теперь не представляет загадки. Не все атомные ядра устойчивы. Особенно тяжелые ядра, принадлежащие атомам элементов конца таблицы Менделеева. Эти неустойчивые ядра способны самопроизвольно распадаться, превращаясь в другие.

Все эти превращения можно разбить на несколько групп. К первой группе относятся те, которые связаны с испусканием ядрами так называемых альфа (α) — частиц. Вес каждой альфа-частицы равен четырем атомным единицам массы, причем она несет два положительных заряда. Следовательно, альфа-частицы — это не что иное, как ядра атомов элемента гелия. Из ядер тяжелых атомов они выбрасываются с громадной скоростью, равной 15–20 тысячам километров в секунду. Различают альфа-частицы по величине их энергии, однако чаще пользуются на практике другой характеристикой — длиной свободного пробега. Длина пути альфа-частицы в каждом веществе строго постоянна; она тем больше, чем больше ее энергия. Радиоактивные элементы конца периодической системы испускают альфа-частицы с длиной пробега в воздухе от 2 до 8 сантиметров. При движении в веществе альфа-частицы сталкиваются с его атомами, вызывая их ионизацию, а потому, теряя энергию, довольно быстро замедляются.

Что же происходит с ядром, когда оно испускает альфа-частицу? Поскольку заряд его уменьшается на две единицы, очевидно, оно превращается в ядро элемента, стоящего на две клетки левее в периодической системе. Атомный вес его уменьшается на четыре единицы. В качестве примера можно привести превращение атома радия в радон: радий → радон + альфа-частица.

В ядерной физике это уравнение записывается так:

Следующая группа превращений связана с испусканием ядрами бета (β) — частиц, или электронов. Этот процесс обязан своим происхождением избытку нейтронов в ядрах некоторых атомов. Схему его можно представить следующим образом: нейтрон → протон + электрон, или n → p + e то есть нейтрон переходит в протон, и образующийся при этом электрон покидает ядро. Нетрудно догадаться, что при бета-распаде образующийся элемент располагается в периодической системе на одну клетку вправо, а атомный вес остается без изменения, поскольку масса электрона близка к нулю. В качестве примера можно привести превращение протактиния в уран:

В отличие от альфа-частиц бета-частицы не обладают ни постоянной величиной пробега, ни постоянной энергией. Такое положение наблюдается для любого радиоактивного вещества, испускающего бета-частицы. Это дало повод некоторым ученым даже сомневаться в фундаментальном законе природы — законе сохранения энергии.

Объяснил это явление знаменитый итальянский ученый Энрико Ферми. Он доказал, что испускание бета-частицы ядром атома должно сопровождаться вылетом из ядра еще одной частицы, не имеющей электрического заряда, с массой, близкой к нулю. Эта частица получила название «нейтрино», что по-итальянски значит «маленький нейтрон», «нейтрончик».

Поскольку ядро выбрасывает две частицы, энергия между ними может распределиться самым различным образом. Нейтрино может забрать много энергии, и тогда на долю бета-частицы достанется лишь малая ее часть. Нейтрино может и не получить ничего, тогда бета-частица будет иметь максимальную энергию, которой и характеризуется бета-излучение. Бета-частицы вылетают из ядер с громадной скоростью, близкой к скорости света. А поскольку заряд их мал, то в отличие от альфа-частиц они редко вызывают ионизацию атомов вещества, в котором движутся. Поэтому и пробег их значительно больше, чем у альфа-частиц.

Кроме отрицательно заряженных бета-частиц, существуют еще и положительные, которые обозначаются значком р+ и называются позитронами. Если ядро испускает позитрон, образующийся элемент передвигается на одну клетку влево в периодической системе.

Еще одна группа превращений связана с явлением, которое получило название электронного захвата. Он наблюдается, когда ядра содержат избыточное количество протонов. В этом случае ядро захватывает электрон с ближайшей электронной оболочки, и один из протонов превращается в нейтрон:

p + e → n

Обычно ядро захватывает электрон с оболочки, ближе всего расположенной к ядру, с так называемой K-оболочки, почему это явление и получило название «K-захват». В результате захвата в электронной оболочке образуется «вакантное» место, которое занимает электрон, находившийся раньше на оболочке, более удаленной от ядра. Переход электрона с одной оболочки на другую является причиной рентгеновского излучения.

Перейти на страницу:

Похожие книги

Алхимия
Алхимия

Основой настоящего издания является переработанное воспроизведение книги Вадима Рабиновича «Алхимия как феномен средневековой культуры», вышедшей в издательстве «Наука» в 1979 году. Ее замысел — реконструировать образ средневековой алхимии в ее еретическом, взрывном противостоянии каноническому средневековью. Разнородный характер этого удивительного явления обязывает исследовать его во всех связях с иными сферами интеллектуальной жизни эпохи. При этом неизбежно проступают черты радикальных исторических преобразований средневековой культуры в ее алхимическом фокусе на пути к культуре Нового времени — науке, искусству, литературе. Книга не устарела и по сей день. В данном издании она существенно обновлена и заново проиллюстрирована. В ней появились новые разделы: «Сыны доктрины» — продолжение алхимических штудий автора и «Под знаком Уробороса» — цензурная история первого издания.Предназначается всем, кого интересует история гуманитарной мысли.

Вадим Львович Рабинович

Культурология / История / Химия / Образование и наука