Выборы новых членов академии были знаменательным событием в академической жизни. Как только открывалось вакантное место, из числа академиков назначались особые комиссии, которые должны были представить не менее трех кандидатов с обоснованием их заслуг. Фамилии претендентов на звание действительного члена публиковались за неделю до выборов. Целый мирок парижского общества напряженно следил за всеми перипетиями этой кампании. Результаты голосования печатались в протоколах академии. Избрание неудачной кандидатуры нередко вызывало в обществе и печати недовольные толки и нарекания. Кандидаты, не получившие одобрения, оставались в списках и на каждых последующих выборах продвигались в порядке установленной очереди к окончательному представлению.
Пуанкаре числился в списках по секции геометрии с 1881 года, когда после смерти Мишеля Шаля в члены академии был избран Камилл Жордан. Блестящие работы молодого математика по теории фуксовых функций и их многообразным приложениям привлекли к нему внимание академической комиссии. Он был представлен одновременно с Аппелем и Пикаром и оказался вместе с ними на пятом месте. В 1884 году в академию прошел Гастон Дарбу, а неразлучная троица передвинулась на четвертое место. На следующий год последовало избрание Эдмона Лагерра, и вместе с Маштгеймом они разделили уже третье место. В этом же году скончался Жан Буке, знакомство с которым оказало столь благотворное влияние на становление Пуанкаре как математика. (Знаменитый математический дуэт распался еще в 1880 году, когда умер Шарль Брио.) Теперь Анри с щемящим чувством теплой благодарности вспоминал, какую неизменную отзывчивость встречали у знаменитого метра его первые самостоятельные шаги на научном поприще. На освободившееся место в 1886 году был избран Жорж Альфан; Аппель, Пикар и Пуанкаре были уже на втором месте в списках. Следующие выборы могли оказаться для кого-то из них решающими. Друзья становились невольными конкурентами, но им не пришлось оспаривать друг у друга голоса академиков.
Очередные выборы состоялись в самом начале 1887 года. Причиной тому была преждевременная смерть Лагерра, не пробывшего в числе академиков и двух лет. Можно усматривать глубокий смысл в том обстоятельстве, что Пуанкаре предоставлялась честь заступить место одного из своих бывших наставников в математике. Но еще более многозначительным выглядит тот факт, что в борьбе за высший ученый титул ему пришлось противостоять не кому иному, как Маннгейму. Судьба словно нарочно столкнула их в этом своеобразном поединке. Те из друзей Пуанкаре, кто был посвящен в историю его острого конфликта с полковником Маннгеймом в Политехнической школе, рассматривали наступившие выборы как продолжение той давней дуэли.
Тем сильнее волновало их ожидание скорой уже развязки, когда 24 января они сидели в зале заседаний академии среди публики, разместившейся на длинных скамьях вдоль стен. Лившийся сверху свет отбрасывал резкие тени на каменно-суровые лица великих французских писателей, весьма неодобрительно взиравших со своих пьедесталов на беспокойно шевелящуюся, поскрипывающую стульями толпу академиков. Тускло и буднично звучал голос непременного секретаря, зачитывавшего представления комиссий. Кандидатуру Пуанкаре сопровождала лаконичная, но весьма емкая характеристика, Что его научные работы "выше обычной похвалы". Вот поднялся председатель и, близоруко вглядываясь в глубину зала, объявил, что по установленному порядку голосование будет проходить при закрытых дверях. Посетители со сдержанным гулом высыпали в длинный, просторный холл, украшенный статуей Шатобриана. Кому же отдадут предпочтение маститые академики: пожилому профессору Политехнической школы или молодому профессору Сорбонны, учителю или его бывшему ученику, сравнявшемуся с ним своей ученостью? А может быть, даже превзошедшему его? Через неделю любой желающий мог ознакомиться с результатами голосования, прочитав протоколы Академии наук. Тридцатью одним голосом против двадцати четырех действительным членом был избран Анри Пуанкаре. Ему было тогда тридцать два года.
Задача трех тел
Короли и математика — это тема для особых размышлений. Почему коронованные особы порой проявляют такой пристальный интерес к этой науке? Быть может, дело в том, что, как сказал Александру Македонскому один древний философ, "в математике нет царских путей"? Во всяком случае, история знает немало примеров, когда эта область человеческого знания удостаивалась августейшего внимания.