О чем беседовали прославленный английский математик и его молодой французский коллега, осталось неизвестным. Но можно не сомневаться, что очень скоро они углубились в обсуждение сугубо профессиональных вопросов. Пуанкаре, наверное, рассказывал о своих последних результатах по качественной теории дифференциальных уравнений, о дальнейшем приложении фуксовых функций к решению алгебраических проблем. Как раз незадолго до этого Фукс опубликовал в «Докладах» Берлинской академии статью, весьма заинтересовавшую Пуанкаре. Уже не раз задавал он себе вопрос: нельзя ли применить методы, оказавшиеся столь успешными при интегрировании линейных дифференциальных уравнений, к нелинейным уравнениям, пусть даже не ко всем, а только к некоторым? Существенное различие между линейными и нелинейными дифференциальными уравнениями заключалось в количестве особых точек: у первых их было конечное число, у вторых — бесконечное множество. Если бы среди нелинейных уравнений нашлись такие, которым соответствует ограниченная совокупность особых точек, то можно было бы попытаться применить к ним уже развитый для линейных уравнений подход. И вот Фукс формулирует теорему, в которой высказывает необходимые и достаточные условия для того, чтобы дифференциальное уравнение имело только конечное число особых точек. Повторялась ситуация, сложившаяся накануне открытия фуксовых функций. Немецкий математик снова заразил Пуанкаре лихорадкой поисков новых высших трансцендентных функций, с помощью которых можно было бы интегрировать некоторые из нелинейных дифференциальных уравнений. Но на этот раз после углубленного изучения вопроса Анри пришел к неутешительному итогу. Все нелинейные уравнения, которые удовлетворяли условиям Фукса, либо попросту сводились к линейным, либо же интегрировались с помощью уже известных функций, например эллиптических. Найти новый класс интегрируемых уравнений не удалось.
Рассказывая об этих и других своих исследованиях, Пуанкаре, быть может, посвятил гостя в еще один круг своих научных интересов, весьма отличный от всего, чем он занимался до сих пор. Находясь под глубоким впечатлением только что вышедшей из печати статьи Ковалевской, посвященной кольцу Сатурна, он решил заняться этой интереснейшей проблемой, увлекавшей многие великие умы на протяжении веков.
Как ни ярка, как ни своеобычна индивидуальность ученого, она беспомощна в мировом размахе науки, если не сцеплена неразрывными связями с переживаниями всего коллективного научного творчества, если мысль ее не бьется в унисон с мыслями многих других творцов. Разум Пуанкаре, как тонко резонирующая струна, живо отзывается на все созвучные его внутреннему настрою волнения в бесконечно разнообразном океане научной жизни, а широта диапазона его «резонаторов» свидетельствует о необычном богатстве палитры его интеллекта. Уж сколько раз первотолчком, стимулом к действию служило для Пуанкаре чужое творение. Он на лету схватывает мысль автора, мозг его молниеносно проделывает всю необходимую работу, и вот уже включается в работу творческое воображение, которое увлекает ученого вперед, далеко за пределы горизонта самого автора.
Пуанкаре, но свидетельству его племянника Пьера Бутру, читал математические труды своим особым методом. Он не мог заставить себя терпеливо прослеживать длинную цепь выводов, определений и теорем. Мысль его сразу же устремлялась к главному результату, который представлялся ему центром всей проблемы. От него Пуанкаре двигался уже к периферии, быстрым, уверенным взглядом охватывая все утверждения, теоремы и выводы, которые окружали основную идею работы. Почти то же самое говорит Поль Аппель; у Пуанкаре был "гениальный дар интуитивного проникновения, в основную мысль каждого вопроса, откуда она происходит и место, которое она занимает в общей системе". Этим объясняются проворство и живость его мысли, не отстававшей от его поистине универсальной любознательности. Теперь своеобразным умственным возбудителем явилась для Пуанкаре статья Ковалевской, обратившая его внимание на давно уже волновавшую ученых загадку кольца Сатурна.