Женившись в 1909 г., он вынужден был найти работу, чтобы прокормить семью. С помощью друга он получил рекомендательное письмо для работы с математиком-любителем Рамачандрой Рао, который был сборщиком налогов в Нелоре, в 130 км к северу от Мадраса. Рао так описал свою первую встречу с Рамануджаном: «Несколько лет назад мой племянник, который совсем не разбирался в математике, сказал мне: «Дядя, у меня бывает посетитель, который говорит о математике, но я не могу понять его. Не могли бы Вы посмотреть, есть ли что-нибудь интересное в том, что он говорит?» Уверенный в своем математическом превосходстве, я согласился поговорить с Рамануджаном. Это был невысокий, простой, энергичный человек, небритый, растрепанный, с привлекательным лицом и блестящими глазами; он пришел с потрепанной записной книжкой под мышкой. Он был очень беден. Он приехал из Кумбаконама в Мадрас, надеясь найти возможность заниматься исследованиями. Он не просил ничего особенного.
Ему лишь нужно было с кем-то поговорить, а я мог оказать ему такую минимальную поддержку. Он открыл книжку и начал объяснять некоторые из своих открытий. Я сразу понял, что он был необычным человеком, но моих знаний не хватало, чтобы оценить его достижения. Я решил не спешить с выводами и попросил его прийти еще раз. Так он и сделал. Он понимал ограниченность моих знаний и показал мне некоторые из его простых результатов. Шаг за шагом он познакомил меня с эллиптическими интегралами и гипергеометрическими рядами и, наконец, со своей теорией расходящихся рядов, о которой он еще никому не рассказывал, в этом я был уверен. Я спросил его, чего он хочет. Он ответил, что хочет небольшое пособие, которого хватило бы на жизнь, чтобы он мог продолжать исследования».
Рамануджан не принял благотворительности и в конце концов получил должность бухгалтера в мадрасском порту. Хотя, будучи ответственным работником, он аккуратно выполнял свои обязанности в компании, его заветной целью было заработать достаточно средств на содержание семьи и посвятить себя математике.
Не будет преувеличением сказать, что Рамануджан обладал особым даром видеть числа. Существует много примеров, демонстрирующих его необыкновенные способности. Однажды
Еще один случай произошел летом 1917 г. Рамануджан с симптомами туберкулеза был отправлен в санаторий в Патни, что на юге Лондона. Его друг и наставник, британский математик Харди, однажды утром навестил его. «Помню, я приехал к нему в Патни, — рассказывал Харди. — Я прибыл на такси со скучным, непримечательным номером 1729 и рассказал об этом Рамануджану. «Нет, — ответил тот, — это очень интересный номер. Это наименьшее число, которое может быть выражено в виде суммы двух кубов двумя различными способами». И в самом деле,
1729 = 13 + 123 = 93 + 103.
Тогда я спросил его, знает ли он решение для четвертой степени, и он ответил, подумав, что оно не так очевидно, и что первое из таких чисел должно быть очень большим».
Рамануджан увлекся областью математики, которую Харди считал самой трудной: теорией чисел. И очень скоро перед ним встала та же задача, которая мучила всех математиков, на протяжении веков блуждающих в загадочном царстве простых чисел. Рамануджан решил найти «волшебную формулу», которая бы позволила получить все простые числа. Эта задача неизбежно вела к другим серьезным проблемам, таким как исследование расходящихся рядов.
В Индии экономическое и социальное положение Рамануджана не позволяли ему добиться существенного прогресса. Знакомые математики тоже не могли ему посодействовать. Тогда друзья помогли ему составить письмо на английском языке, в котором Рамануджан описал свои результаты и желание расширить свои знания. Оно было отправлено нескольким известным европейским математикам.
Вот это замечательное письмо: