Читаем Простая одержимость полностью

У нас здесь нет места, чтобы вдаваться в эти вещи. Мой совет — не думать о них слишком много. Это путь в безумие. (Действительно, Кантор закончил свои дни в лечебнице, хотя это и было в большей степени результатом врожденной предрасположенности к депрессии, усугубленной трудностями, с которыми его теории пробивались к признанию, нежели результатом слишком усердных размышлений о вещественной прямой. Его теории сейчас не подвергаются серьезным сомнениям.)

Но куда же нам теперь поместить комплексные числа? Вещественная прямая вся забита — и как забита! — рациональными и иррациональными числами. А ведь для каждого вещественного a имеется бесконечно много комплексных чисел вида a + bi, где b свободно бегает себе вверх и вниз по вещественной прямой. Что же с ними делать?

Последнее замечание подсказывает ответ. Для каждого вещественного числа нам нужна прямая, а поскольку вещественных чисел бесконечно много, нам нужно бесконечно много таких прямых бок о бок друг с другом. Это означает, что нам требуется плоскость. Тогда как вещественные числа можно выстроить для парада вдоль прямой, для комплексных чисел требуется плоскость — которую, разумеется, называют «комплексной плоскостью». Каждое комплексное число изображается точкой где-то на этой плоскости.

Рисунок 11.2. Комплексная плоскость и точка z на ней (изображена точка −2,5 + 1,8i); показаны ее модуль и фаза, а также сопряженное число.

Чаще всего комплексную плоскость рисуют так (рис. 11.2) что, вещественная прямая простирается с запада на восток. Под прямым углом к ней в направлении с юга на север проведена другая прямая, на которой живут все чисто мнимые числа: i, 2i, 3i и т.д. Чтобы добраться до числа a + bi, надо уйти на расстояние a на восток (на запад, если a отрицательно), а затем на расстояние b на север (на юг, если b отрицательно). Вещественная прямая и мнимая прямая (их чаще называют «вещественная ось» и «мнимая ось») пересекаются в нуле. Точки на вещественной оси имеют нулевую мнимую часть. Точки на мнимой оси имеют нулевую вещественную часть. Точка их пересечения — т.е. точка, расположенная на обеих осях, — имеет и вещественную, и мнимую части равными нулю. Это точка 0 + 0i, т.е. попросту нуль.

Введем три новых профессиональных термина. Модуль комплексного числа — это расстояние по прямой от этого числа до нуля. Обозначается модуль как |z|, что произносится «модуль зет». По теореме Пифагора модуль комплексного числа a + bi есть . Это всегда положительное вещественное число или нуль. Фаза комплексного числа — это угол, составленный с положительной частью вещественной оси, измеряемый в радианах. (Один радиан равен 57,29577951308232… градуса; 180 градусов — это π радиан.) Фазу по соглашению считают углом, лежащим между −π (не включая) до π (включая), а обозначается она как Φ(z).[93] У положительных вещественных чисел фаза равна нулю, у отрицательных вещественных она равна −π, у положительных мнимых равна π/2, а у отрицательных мнимых фаза равна −π/2.

И наконец, комплексным сопряжением комплексного числа называется его зеркальное отображение относительно вещественной оси. Комплексное сопряжение числа a + bi есть a − bi. Обозначается оно как z', что произносится как «зет-с-чертой».{2} Если перемножить комплексное число с его сопряженным, то получится вещественное число: (a + bi)×(a − bi) = a2 + b2, что, как видно, есть квадрат модуля числа a + bi. На этом и основан фокус, позволяющий делить комплексные числа. Используя введенные обозначения, можно записать z×z' = |z|2, а фокус с делением выражается как z/w = (z×w')/|w|2.

Модуль комплексного числа −2,5 + 1,8i, показанного на рисунке 11.2, равен √9,49, то есть около 3,080584, фаза составляет 2,517569 радиана (или, если вам так больше нравится, 144,246113 градуса), а сопряженное число, конечно, есть −2,5 − 1,8i.

VI.

Чтобы продемонстрировать комплексную плоскость в действии, я чуть-чуть потренируюсь в анализе с комплексными числами. Рассмотрим бесконечный ряд из выражения (9.2):

1/(1 − x) = 1 + x + x2 + x3 + x4 + x5 + x6 + …(x лежит строго между −1 и 1).

Поскольку здесь не предпринимается никаких действий, кроме сложения, умножения и деления чисел, нет причин, по которым x нельзя было бы сделать комплексным числом. Работает ли эта формула для комплексных чисел? Да, при определенных условиях. Пусть, например, x равен 1/2i. Тогда ряд сходится. Имеем

1/(1 − i/2) = 1 + 1/2i + 1/4i2 + 1/8i3 + 1/16i4 + 1/32i5 + 1/64i6 + …

Левая часть вычисляется с помощью рассмотренного выше фокуса с делением как 0,8 + 0,4i. Правую часть можно упростить, используя тот факт, что i2 = −1:

0,8 + 0,4i = 1 + 1/2i1/4 + 1/8i1/16 + 1/32i − 1/64 + …
Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное