Читаем Простая одержимость полностью

Но арифметика обладает тем занятным свойством, что в ней довольно легко сформулировать утверждения, которые невероятно трудно доказать. В 1742 году Кристиан Гольдбах выдвинул свою знаменитую гипотезу, что любое четное число большее двойки можно представить как сумму двух простых чисел. Усилия, прилагавшиеся лучшими умами на планете на протяжении двадцати шести десятков лет, не принесли ни доказательства, ни опровержения этого простого утверждения (которое послужило источником вдохновения по крайней мере для одного романа: «Дядя Петрос и гипотеза Гольдбаха» Апостолоса Доксиадиса.[48] В арифметике имеются сотни подобных гипотез, одни из них доказаны[49], а другие остаются открытыми.

Нет сомнения, что именно это имел в виду Гаусс, когда отверг предложение вступить в соревнование за награду, обещанную за доказательство Последней теоремы Ферма. Генриху Олберсу, который побуждал его участвовать, Гаусс ответил: «Должен сознаться, что теорема Ферма… не слишком меня интересует, поскольку я без труда мог бы произвести множество утверждений подобного типа, — таких, которые будет невозможно ни доказать, ни опровергнуть».

Следует, впрочем, сказать, что равнодушие Гаусса в данном случае — это точка зрения меньшинства. Задача, сформулировать которую можно в нескольких простых словах, но решить которую лучшие математические таланты не могут на протяжении десятилетий — или, как в случае гипотезы Гольдбаха или Последней теоремы Ферма, столетий, — обладает неотразимой привлекательностью для большинства математиков. Они знают, что могут прославиться, если решат ее, как это произошло с Эндрю Уайлсом, доказавшим Последнюю теорему Ферма. Из истории вопроса им также известно, что даже неудачные попытки могут привести к созданию мощных новых методов и получению новых результатов. И кроме того, никуда не делся «фактор Мэлори»: отвечая на вопрос «Нью-Йорк таймс», почему ему так хочется забраться на гору Эверест, Джордж Мэлори[50] ответил: «Потому что она есть».

V.

Связь между измерением и счетом такова. Поскольку нет никакого теоретического предела точности, с которой можно измерить некую величину, список всех возможных измерений бесконечен и при этом бесконечно измельчен. Между измерением, которое дает 2,3 дюйма, и измерением, которое дает 2,4 дюйма, имеются промежуточные, более точные результаты в 2,31, 2,32, 2,33, …, 2,39 дюйма, которые можно разбивать далее, и так до бесконечности. Поэтому мы можем совершить мысленное путешествие, в котором, переходя от одного результата измерения к любому другому, мы связываем их через бесчисленное количество других, расположенных между ними, и при этом никогда не возникнет проблемы, что нам будет не на что наступить. Эта идея связности — путешествия через пространство или некоторый интервал без необходимости перепрыгивать через пустоты — лежит в основе жизненно важных математических понятий непрерывности и предела. Другими словами, она лежит в основе всего анализа.

Наоборот, если мы занимаемся счетом, то между семью и восемью ничего нет; нам приходится совершать прыжок от одного числа к другому, причем между ними нет никаких камешков, по которым можно было бы скакать. Да, измеряя что-то, можно получить результат в семь с половиной дюймов, но нельзя насчитать семь с половиной объектов. (Ваше возражение могло бы быть таким: «А что, если у меня семь с половиной яблок? Разве это не высказывание о результате счета?» Я бы ответил: «Я могу разрешить вам выражаться таким образом, но только если вы уверены, что там ровно семь с половиной яблок, — в той же степени, в которой Ларри, Керли и Моу[51] — это ровно три человека. А что, если у вас 0,501 или 0,497 от целого яблока?» И если мы желаем разрешить этот вопрос, то мы немедленно попадаем в царство измерений. «Семь с половиной струнных квартетов» — это жульничество.)

Великое соединение арифметики и анализа — соединение счета и измерения, чисел staccato и чисел legato — возникло в результате исследования простых чисел, предпринятого Леженом Дирихле в 30-х годах XIX века. Дирихле (1805-1859), несмотря на свои имя и фамилию, был немцем из городка близ Кельна, где он и получил большую часть своего образования.[52] Тот факт, что он был немцем, уже сам по себе заслуживает небольшого отступления, ибо соединение идей из арифметики и анализа, выполненное Дирихле и Риманом, происходило на фоне широких социальных изменений в математике в целом — подъемом немцев.

VI.
Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги