Читаем Простая одержимость полностью

И теперь, чтобы продемонстрировать важность вторичного члена в выражении (21.1), а также связанные с ним проблемы, мы разберем его на части. Для этого начнем с его сердцевины и будем двигаться изнутри наружу, т.е. сначала рассмотрим xρ, затем функцию Li, а потом уже — вопрос о суммировании по всем возможным значениям буквы ρ.

IV.

Вот, стало быть, перед нами число x, являющееся вещественным. (Окончательная цель всего упражнения состоит в том, чтобы получить формулу для функции π(x), а она осмысленна только для вещественных чисел и даже, честно говоря, для натуральных; правда, мы изменили обозначения от N к x, чтобы использовать средства математического анализа.) С этим x мы делаем такое: возводим его в степень ρ, представляющую собой комплексное число, причем если Гипотеза Римана верна, то комплексное число вида 1/2 + ti (где t — некоторое вещественное число). Это действие само по себе заслуживает обсуждения.

При возведении вещественного числа x в комплексную степень а + bi правила комплексной арифметики предписывают следующее. Модуль результата — т.е. расстояние до нуля, измеряемое по прямой, — есть xa. Буква b на модуль никак не влияет. Зато фаза результата — насколько он повернут и в каком секторе комплексной плоскости лежит — зависит от x и b, но a на фазу не влияет.

При возведении вещественного числа x в степень 1/2 + ti, таким образом, модуль результата есть x в степени 1/2, т.е. √x. Фаза при этом может оказаться какой угодно — результат может угодить в любой сектор комплексной плоскости, при условии только, что расстояние от нуля равно √x. Иными словами, если при заданном x вычислять значения выражения xρ для множества различных нулей ρ дзета-функции, то получаемые числа будут разбросаны по окружности радиуса √x в комплексной плоскости с центром в нуле (при условии, что ГР верна!).

На рисунке 21.2 отмечены точки, представляющие собой результат возведения числа 20 в степень, определяемую первым, вторым, третьим, …, двадцатым нулем дзета-функции. Видно, что результаты разбросаны по окружности радиуса √20 (что равно 4,47213…) в комплексной плоскости, причем без особого порядка. Это происходит потому, что функция 20s отображает критическую прямую в окружность радиуса √20 таким образом, что критическая прямая (вместе со всеми нанесенными на нее нулями дзета-функции) наматывается и наматывается на эту окружность, делая это бесконечное число раз. На математическом языке данная окружность в плоскости значений задается как 20критическая прямая.

Рисунок 21.2. Плоскость значений для функции w = 20z. Показаны значения w для первых двадцати нетривиальных нулей дзета-функции.

Представим себе, что наш приятель муравей Арг топает на север по критической прямой в плоскости аргумента, а на его приборчике выставлена функция 20s; тогда его брат-близнец, муравей Знач, отслеживая соответствующие значения в плоскости значений, нарезает круги по нашей окружности. Он продвигается против часовой стрелки, и к тому моменту, как муравей Арг доберется до первого нуля дзета-функции, муравей Знач одолеет уже почти три четверти своего седьмого круга.[197]

V.

А теперь мы найдем, одно за одним, значения функции Li во всех этих точках — во всем бесконечном числе этих точек. К сожалению, это комплексные числа, а мы определили функцию Li только для вещественных чисел — как площадь под кривой. Имеется ли способ определить Li также и для комплексных чисел? Что из себя представляют интегралы для комплексных чисел? Да, способ определить эту функцию есть; и, кроме того, да, существует способ интегрировать, когда в этом деле участвуют комплексные числа. Интегрирование на самом деле представляет собой один из важнейших элементов комплексного анализа, объект самых прекрасных и мощных теорем во всем этом разделе. Не вдаваясь в подробности, я скажу только, что, да, функция Li(z) определена[198] для комплексных чисел z.

На рисунке 21.3 показано, куда функция Li отображает первые 10 точек, изображенных на рисунке 21.2. Другими словами, (точнее, ее отрезок от 1/2 + 14i до 1/2 + 50i). Как видно, эта функция отображает критическую прямую в спираль, идущую против часовой стрелки и приближающуюся к числу πi по мере того, как аргумент взбирается вверх по критической прямой. Там, где функция 20z бесконечно много раз наматывала и наматывала критическую прямую на окружность радиуса √20, применение функции Li разматывает ее в изящную спираль; на ней по-прежнему нарисованы точки, изображающие нули.

Рисунок 21.3. Функция Li(20z) для отрезка критической прямой.

VI.
Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное