Ее характеристический многочлен равен x4 − 11x3 + 40x2 − 97x + 83. (Можно заметить, что след этой матрицы, как и след приведенной выше, равен 11. Это чистое совпадение, и эти матрицы больше никак не связаны.) Этот многочлен имеет полный набор из четырех нулей. С точностью до пяти знаков после запятой они равны 1,38087, 7,03608, 1,29152 − 2,62195i и 1,29152 + 2,62195i. Это, конечно, собственные значения матрицы. Два из них, как мы видим, являются комплексными числами (причем комплексно сопряженными друг другу, что всегда верно для многочлена с вещественными коэффициентами). Это вполне нормально, даже когда, как в данном случае, все числа в исходной матрице вещественные. Сумма четырех собственных значений равна 11 — мнимые компоненты сокращаются при сложении.
V.После нескольких десятилетий исследований матриц математики расклассифицировали их на несколько различных типов. Они развили, так сказать, таксономию матриц, в которой полное семейство (N×N)-матриц — называемое математиками общей линейной группой порядка N и обозначаемое как GLN — было разбито на виды и рода.
Выберем всего один из видов в этом большом зверинце — эрмитовы матрицы, названные по имени великого французского математика Шарля Эрмита, с которым мы мельком встречались в главе 10.v. Числа, входящие в эрмитову матрицу, являются комплексными и организованы таким образом, что если число, стоящее в m-й строке и n-м столбце, есть a + bi, то число, стоящее в n-й строке и m-м столбце, есть a − bi. Другими словами, каждый элемент матрицы равен комплексному сопряжению (см. главу 11.v) своего отражения относительно главной диагонали. Попытаюсь прояснить это на примере эрмитовой (4×4)-матрицы:
Как видно, элемент в третьей строке и первом столбце равен комплексному сопряжению элемента в первой строке и третьем столбце. Это эрмитова матрица. Заметим, что из определения следует, что все числа на главной диагонали должны быть вещественными, поскольку определение требует, чтобы каждое число на диагонали было комплексно сопряжено самому себе, а этим свойством обладают только вещественные числа: a + bi = a − bi, если и только если b = 0.
Насчет эрмитовых матриц имеется знаменитая теорема, гласящая, что все собственные значения эрмитовой матрицы вещественны. Если немного подумать, то это выглядит несколько неожиданным. Даже когда все элементы какой-либо матрицы вещественны, ее собственные значения могут оказаться комплексными, как мы видели на примере первой из наших (4×4)-матриц. Если же некоторая матрица с комплексными элементами имеет вещественные собственные значения, то это поистине замечательно. Именно так и происходит, если матрица эрмитова. Собственные значения приведенной выше эрмитовой матрицы (приближенно) равны 4,8573, 12,9535, −16,553, −3,2578. Все они вещественны (и в сумме дают −2, т.е. след матрицы).
Из этой теоремы между прочим следует, что все коэффициенты характеристического многочлена эрмитовой матрицы вещественны. Это получается потому, что собственные значения любой матрицы по определению являются нулями характеристического многочлена. Если нули многочлена — это a, b, с, …, то его можно разложить на множители как (x − а)(x − b)(x − c)…. Если здесь просто раскрыть скобки, то получится многочлен в обычном виде. Но раз все числа a, b, с, … вещественные, то раскрытие скобок приводит к выражению, в котором все коэффициенты — вещественные числа. Используя приведенные выше собственные значения нашей эрмитовой (4×4)-матрицы, получаем, что характеристический многочлен равен (x − 4,8573)(x − 12,9535)(x + 16,553)(x + 3,2578). Раскрытие скобок дает характеристический многочлен в виде x4 + 2x3 − 236x2 + 286x + 3393.
VI.Все это было известно 100 лет назад… Другими словами, в то время, когда Давид Гильберт только приступал к изучению интегральных уравнений, причем исследование операторов играло там ключевую роль. В начале XX века другие математики — одни независимо, другие — вдохновившись работой Гильберта, — также были поглощены исследованием операторов. Операторы просто носились в воздухе. Гипотеза Римана в тот момент тоже висела в воздухе, но не до такой степени, хотя после доклада Гильберта в 1900 году и публикации книги Ландау в 1909-м всерьез задумываться о ней начали многие лучшие умы.
Поэтому не должно показаться слишком неожиданным, что два наиболее блестящих и широко мыслящих интеллекта своего времени смогли соединить эти две вещи. Один из этих интеллектов принадлежал Гильберту, а другой — Джорджу Пойа. И тот и другой, судя по всему, пришли к одному и тому же пониманию независимо друг от друга. Их мыслительные процессы, наверное, развивались примерно таким образом: