Читаем Прорыв за край мира полностью

где Δр — неопределенность в импульсе частицы, Δх — неопределенность в положении частицы, вторая строчка — аналогично для неопределенностей в энергии и времени, ћ — постоянная Планка. Это столь же фундаментальная постоянная, как и скорость света. К ним надо добавить еще гравитационную постоянную G. Если и есть что-то общее у разных вселенных, то, скорее всего, именно эта тройка констант. Конечно, общими не могут являться их конкретные численные значения — они есть результат нашего произвольного выбора единиц. Наоборот, эти константы задают естественную систему единиц, правда, не очень удобную для нас (см. ниже в этой главе). Общность скорее может заключаться в том, что процессы в разных вселенных имеют в этих естественных единицах одинаковое описание.

Из соотношения неопределенностей легко оценить, например, размер атома водорода RH не прибегая к решению квантомеханических уравнений: энергия связи электрона в атоме порядка Е = e2/RH, где е — заряд электрона. Кинетическая энергия связанного электрона должна быть порядка половины энергии связи — во всяком случае, такой принцип соблюдается в классической механике. От более глубокого падения электрона на протон страхует как раз принцип неопределенности: Δр Δх ~ √ Emе, RH ~ ћ/2. Из этих условий находим, что RH = ћ2/4 e2/me = 0,13·10-8 см, что в четыре раза отличается от размера боровского радиуса (который, конечно, тоже весьма условно характеризует размер атома). Такую точность можно считать вполне удовлетворительной.

Обратите внимание, что масса электрона стоит в знаменателе. Это значит, что если вместо электрона в атоме будет более тяжелая частица, то его размер будет меньше. Так и есть, мюонный атом водорода в 100 раз меньше нормального атома водорода. Но мюон живет всего 10-6 с. А если бы он был стабилен? Тогда могли бы существовать молекулы в 100 раз меньшего размера, а также в миллион раз более плотные жидкости и твердые вещества.

Таким образом, квантовая механика диктует: системы меньшего размера можно строить только из более тяжелых частиц, и связаны они должны быть сильнее. Так что ни о каких мирах на масштабах атома речи идти не может. У нас нет более тяжелых стабильных частиц! Стабильная составная система наименьшего размера, существующая в нынешней Вселенной, — протон.

А каковы будут размеры квантовой гравитационно связанной системы двух частиц? Иными словами, каков размер атома, связанного только силами гравитации? Составляющие его частицы должны быть нейтральными, поскольку кулоновское притяжение или отталкивание сильнее гравитации. Увы, у нас нет нейтральных стабильных элементарных частиц, которые имели бы массу (кроме разве что нейтрино). Поэтому возьмем неэлементарные частицы, например два атома водорода. Имеем: энергия связи Е = Gmp2/R, соотношение неопределенности: √2Emp·R = ћ. Результат R ~ ћ2/Gmр3 ~ 1024 см. Это порядка миллиона световых лет — полпути до Туманности Андромеды. Понятно, что энергия связи такого атома мала до полной потери смысла. Однако обратите внимание, что расстояние обратно пропорционально кубу массы частицы. Если взять недавно открытый бозон Хиггса, или W-бозоны, которые принадлежат к тому же уровню иерархии физических масштабов, размер гравитационного атома будет около светового года. Тоже бессмысленно, тем более, что упомянутые частицы живут ничтожные доли секунды. Существенно более тяжелых частиц мы пока не знаем, но есть серьезные основания предполагать, что за огромным интервалом в 14 порядков величины по энергии взаимодействий и по массе частиц начинается новая физика, новый уровень иерархии — так называемое великое объединение. Там должны существовать частицы, которые в 1016—1017 раз тяжелей протона. Сейчас таких частиц нет — распались, но они существовали в первые мгновения после рождения Вселенной. Размер гравитационного атома из частиц, которые в 1016 раз тяжелей протона, — 10-24 см — на много порядков меньше всего, что доступно зондированию на самых мощных ускорителях. Теперь прикинем энергию связи такого атома: Е = GM2/R = 7 эрг — вполне макроскопическая величина. Чтобы разбить такой атом, не хватит энергии Большого адронного коллайдера. Но в условиях ранней Вселенной, когда ее температура была огромной и существовали частицы уровня великого объединения, это был очень рыхлый атом.

А может ли гравитационный атом быть настолько сильно связанным, чтобы энергия связи оказалась сравнима с массой составляющих его частиц? Может, если частицы в 1019 раз тяжелее протона. Эта масса по порядку величины равна 10-5 г и называется массой Планка. Размер этого атома будет 10-33 см, данная величина называется планковской длиной.

Интересно, каков будет радиус черной дыры массой те же 10-5 г (Rg = GM/c2)? Оказывается, как раз эти самые 10-33 см! То есть гравитационный атом двух точечных частиц массой 10-5 г оказывается черной дырой. В этом заключается смысл планковского масштаба: сходятся квантовая механика (атом) и сильная гравитация.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука