Читаем Происхождение мозга полностью

Размножаться, драться и добывать пищу лучше с использованием гормональной поддержки организма. Древние викинги грызли край щита, доводя до нужного уровень адреналина перед боем. Словесная перепалка на кухне вызывает выброс мобилизирующих гормонов, а через 10 мин становится ясно, как много веских слов и аргументов ещё не высказано. Следовательно, гормональные межклеточные взаимодействия, запускаемые нервной системой, хороши, но инертны, неадаптивны и не поддаются динамическому контролю. Трудно представить, что, собираясь отчаянно спорить, человек будет колоть себя шилом для гормональной мобилизации. Ещё менее вероятен волк, грызущий свой хвост для охотничьего возбуждения.

Для многих других видов гормональный контроль поведения позволяет просто статистически решать проблемы выживания. Для животных с выраженными генетическими программами поведения гормональная регуляция является одним из средств реализации врождённых форм поведения. Это свойственно беспозвоночным, первичноводным позвоночным, амфибиям, значительной части рептилий, птиц и специализированных млекопитающих. Такая распространённость генетико-гормональных форм поведения показывает их эффективность, но основана на вероятностном принципе. У таких видов обычно достаточно много потомков, чтобы хотя бы один из них смог выжить, просто перебирая стандартный набор поведенческих программ.

<p><strong>§ 8. Заряды мембраны нервных клеток</strong></p>

Однако основные свойства нервной системы обусловлены способностью быстро реагировать на изменение ситуации внутри или вне организма. Скоростные процессы не могут осуществляться по медленным гуморальным законам, они происходят по законам электрохимическим. Нервные клетки способны получать, хранить, перерабатывать и передавать информацию при помощи специальной электрической активности. Они обладают зарядом мембраны — потенциалом покоя и могут его изменять в потенциал действия, который с высокой скоростью распространяется по телу клетки.

В основе потенциала покоя нервных клеток лежит баланс электрохимических и осмотических сил, которые действуют на клеточной границе — мембране. Мембрана клетки полупроницаема. Это означает, что через неё могут проникать далеко не все вещества. Мембрана всегда проницаема для воды, избирательно проницаема для определённых ионов и непроницаема для большинства органических соединений. Молекулы ДНК, РНК, белков и аминокислот находятся внутри клетки и не могут свободно диффундировать через мембрану. В соответствии с законами осмоса вода должна проникать в клетку. Поскольку мембрана клетки непроницаема для органических молекул, осмотическое равновесие достигнуто быть не может. Клетка должна была бы лопнуть. Этого не происходит, поскольку осмотическим силам оказывается постоянное противодействие со стороны сил совершенно другой природы.

Эти силы не осмотические, а электрохимические. Работа осмотических сил уравновешивается работой электрохимических. С одной стороны, это не позволяет клетке лопнуть, а с другой — является источником постоянного заряда мембраны нервной клетки. Внутри клетки находятся молекулы ДНК, РНК, белков, аминокислот и углеводов, которые имеют постоянный заряд. Как правило, этот заряд отрицателен и органические молекулы представляют собой набор внутриклеточных анионов (А). Их заряд уравновешивается внутри клетки положительно заряженными ионами калия (К+). Снаружи клетки основным анионом является хлор (Cl-), а катионом — натрий (Na+). В абстрактной идеальной ситуации концентрации ионов должны были бы выровняться в результате диффузии через мембрану. Однако внутриклеточные анионы неподвижны, а специальные каналы для всех подвижных ионов обычно закрыты. Более того, специализированные ионные каналы постоянно откачивают избыток натрия и хлора из клетки и закачивают внутрь внеклеточный калий. Это процесс осуществляется с затратой энергии. Она тратится на то, чтобы создать такую величину заряда мембраны, чтобы её хватило для противодействия осмотическим силам, стремящимся разрушить клетку.

В реальной клетке основные проблемы с осмотическими (гидростатическими) силами обусловлены различиями в концентрации ионов калия и натрия по обе стороны мембраны. Некоторую роль в этом

процессе играют ионы натрия и подвижность воды, свободно движущейся через мембрану клетки. Тем не менее основное значение имеет калий, поскольку его концентрационные различия максимальны. Внутри клетки калия примерно в 40 раз больше, а натрия в 9 раз меньше, чем в межклеточном пространстве, поэтому калий стремится уравновесить ситуацию, двигаясь по концентрационному градиенту из клетки, а натрий — в клетку. Поскольку концентрации этих ионов внутри и снаружи клетки известны, можно выразить эти процессы в реальных физических величинах. Работа, которую надо выполнить для предотвращения движения ионов калия из клетки по концентрационному градиенту 0), будет равна:

где R — газовая постоянная; Т — абсолютная температура; [К+] — молярная концентрация калия внутри (in) и снаружи клетки (out).

Перейти на страницу:

Похожие книги

Инсектопедия
Инсектопедия

Книга «Инсектопедия» американского антрополога Хью Раффлза (род. 1958) – потрясающее исследование отношений, связывающих человека с прекрасными древними и непостижимо разными окружающими его насекомыми.Период существования человека соотносим с пребыванием насекомых рядом с ним. Крошечные создания окружают нас в повседневной жизни: едят нашу еду, живут в наших домах и спят с нами в постели. И как много мы о них знаем? Практически ничего.Книга о насекомых, составленная из расположенных в алфавитном порядке статей-эссе по типу энциклопедии (отсюда название «Инсектопедия»), предлагает читателю завораживающее исследование истории, науки, антропологии, экономики, философии и популярной культуры. «Инсектопедия» – это книга, показывающая нам, как насекомые инициируют наши желания, возбуждают страсти и обманывают наше воображение, исследование о границах человеческого мира и о взаимодействии культуры и природы.

Хью Раффлз

Зоология / Биология / Образование и наука
Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука