Происходит это следующим образом. Существует целая группа белков — гистонов, из которых собран каркас, вокруг которого закручивается и компактно упаковывается ДНК. Восемь гистонов соединяются вместе, образуя своего рода бусину (которая называется «нуклеосома»), и нить ДНК дважды обвивается вокруг этой бусины, как веревка вокруг баскетбольного мяча. Еще один гистон садится на нити ДНК сверху и фиксирует положение этих витков. По обеим сторонам бусины короткий разделительный («спейсерный») участок ДНК обеспечивает соединение со следующей нуклеосомой; так как это соединение является гибким, вся цепочка таких бусин-нуклеосом сворачивается в компактную структуру, которая затем в процессе «сверхспирализации» может свернуться в еще более компактную структуру. Это настоящий шедевр упаковочного искусства. Но все это также означает, что, когда клетке требуется получить доступ к определенному фрагменту генетической информации, соответствующий участок ДНК должен распаковаться ровно настолько, чтобы информацию можно было скопировать на матричную РНК, а затем аккуратно запаковаться обратно. Оказалось, что гистоны не просто образуют каркас, но еще и отвечают за то, как происходит распаковка, считывание и обратная запаковка генов. На данный момент выявлено более пятидесяти типов работы гистонов, некоторые из которых сводятся к активации считывания генов, тогда как другие затрудняют его или оказывают менее явное воздействие. Исследования в этой области продолжаются, но для наших целей достаточно знать, что гистоны участвуют в активации и подавлении экспрессии генов.
Еще один клеточный механизм также контролирует активность генов. Он называется «метилирование», потому что в нем задействованы химические фрагменты, известные как метильные группы. Они возникают тогда, когда «метильный радикал» (CH3) прикрепляется к нитям ДНК в тех местах, где рядом располагаются основания цитозин и гуанин. Метилирование обычно выступает в роли «выключателя» для гена, поэтому во многих случаях ген может активироваться посредством деметилирования[60].
Благодаря метилированию современные ученые смогли объяснить феномен, который в свое время озадачил Линнея. В 1740-х гг. Линней был шокирован, обнаружив разновидность растения, которое выглядело как льнянка обыкновенная, но с совершенно другими цветами. Это особенно взбудоражило Линнея, потому что его система классификации растений основывалась на внешнем виде цветов; он писал, что это было «не менее примечательно, чем если бы корова родила теленка с волчьей головой». В 1990-х гг. ботаник Энрико Коэн обнаружил, что в этих «монструозных» растениях определенный ген, который отвечает за строение цветка, покрыт массой метильных групп и неактивен. Это свойство передается через семена последующим поколениям.
Метилированию могут также подвергаться молекулы РНК, а кроме того, есть немного более загадочный механизм, благодаря которому нити РНК, которые плавают внутри клетки, модифицируют гистоны или влияют на экспрессию генов. Хотя все эти процессы изучены далеко не полностью, очевидно, что геном не всегда активен одинаковым образом, и, несмотря на то что «книга жизни» остается неизменной, то, какие ее фрагменты будут прочитаны и использованы в качестве руководства к действию, зависит от обстоятельств, в которых оказывается клетка, — от окружающей среды. Процесс выбора таких фрагментов называется эпигенетикой[61]; общепринятого определения этого термина на данный момент не существует, но нам это не особо важно.
Один эксперимент с мышами демонстрирует, как может происходить этот процесс. Существует порода мышей с интересным окрасом шерсти, который контролируется одним геном под названием