// sketch 04_11_analog_fast
const byte PS_128 = (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0);
const byte PS_16 = (1 << ADPS2);
void setup()
{
ADCSRA &= ~PS_128; // сбросить масштаб 128
ADCSRA |= PS_16; // добавить масштаб 16 (1 МГц)
Serial.begin(9600);
while (! Serial) {};
Serial.println(PS_128, 2);
Serial.println(PS_16, 2);
Serial.println("Starting Test");
long startTime = millis();
// Далее следует код тестирования
long i = 0;
for (i = 0; i < 1000000; i ++)
{
analogRead(A0);
}
// конец кода, выполняющего тестирование
long endTime = millis();
Serial.println("Finished Test");
Serial.print("Seconds taken: ");
Serial.println((endTime — startTime) / 1000l);
}
void loop()
{
}
Теперь скетч выполняется всего 17 с, то есть, грубо, в 6,5 раза быстрее, а скорость измерений увеличилась до 58 000 в секунду. Этого вполне достаточно для оцифровки аудиосигнала, хотя при наличии всего 2 Кбайт ОЗУ вы не сможете записать большой фрагмент!
Если первоначальный вариант скетча sketch_04_11_analog запустить в Arduino Due, он справится с работой за 39 с. Однако в модели Due не получится использовать трюк с регистрами портов, так как она имеет совсем другую архитектуру.
В заключение
В этой главе мы попытались выжать все до последней капли из наших скудных 16 МГц. В следующей главе переключим внимание на снижение потребления электроэнергии платой Arduino, что очень важно для проектов, где плату предполагается питать от аккумуляторов или солнечных батарей.
Справедливости ради следует отметить, что и без применения специальных мер платы Arduino потребляют не особенно много электроэнергии. Обычно Arduino Uno потребляет ток около 40 мА, что при питании через разъем USB с напряжением 5 В составляет всего 200 мВт. Это означает, что она может благополучно работать около четырех часов, питаясь от аккумулятора 9 В (емкостью 150 мА·ч).
Потребление электроэнергии становится важным аспектом, когда плата Arduino должна работать длительное время, питаясь от аккумулятора, как в системах удаленного мониторинга или управления, когда аккумуляторы или солнечные батареи остаются единственно возможным источником питания. Например, недавно на основе платы Arduino я реализовал автоматическое управление дверью в птичник, использовав небольшую солнечную панель для зарядки аккумулятора, емкости которого достаточно только для того, чтобы открыть и закрыть дверь два раза в день.
Потребление электроэнергии платами Arduino
Прежде всего определим параметры потребления электроэнергии наиболее популярными платами Arduino. В табл. 5.1 представлены результаты непосредственных измерений амперметром силы тока, потребляемого платами. Имейте в виду, что измерение силы потребляемого тока не самая простая задача, так как он меняется, когда при выполнении периодических задач в работу включаются таймеры и другие компоненты микроконтроллера и платы Arduino.
Таблица 5.1. Потребление электроэнергии платами Arduino
Плата | Ток, мА |
---|---|
Uno (5 В, USB) | 47 |
Uno (9 В, внешний источник питания) | 48 |
Uno (5 В, с извлеченным процессором) | 32 |
Uno (9 В, с извлеченным процессором) | 40 |
Leonardo (5 В, USB) | 42 |
Due (5 В, USB) | 160 |
Due (9 В, внешний источник питания) | 70 |
Mini Pro (9 В, внешний источник питания) | 42 |
Mini Pro (5 В, USB) | 22 |
Mini Pro (3,3 В, непосредственно) | 8 |
Обратите внимание на то, как различается ток, потребляемый платами Arduino, питающимися напряжением 5 В, с процессором и без него. Разница составляет всего 15 мА, откуда получается, что остальные 32 мА потребляет сама плата. И действительно, на плате Arduino имеются интерфейс USB, светодиод On и стабилизатор напряжения 3,3 В, которые также потребляют некоторую мощность даже без микроконтроллера. Обратите также внимание на то, насколько меньше потребляет микроконтроллер, питающийся напряжением 3,3 В.