Читаем Программируем Arduino. Основы работы со скетчами полностью

В этой главе вы познакомились со всеми аспектами использования памяти и хранения данных в Arduino. В следующих главах мы займемся исследованием приемов программирования различных последовательных интерфейсов в Arduino, начав с шины I2C.

7. Интерфейс I2C

Интерфейсная шина I2C (произносится «и квадрат си») — стандартный способ подключения периферийных устройств к микроконтроллерам. Иногда интерфейс I2C называют двухпроводным интерфейсом (Two Wire Interface, TWI). Все платы Arduino имеют хотя бы один интерфейс I2C, к которому можно подключать широкий диапазон периферийных устройств. Некоторые из таких устройств представлены на рис. 7.1.

Все три устройства в верхнем ряду на рис. 7.1 являются модулями отображения информации, выпускаемыми компанией Adafruit. В нижнем ряду слева находится модуль УКВ-приемника TEA5767. Эти модули можно приобрести на сайте eBay или где-то в другом месте за несколько долларов. Приобретая модуль TEA5767, вы получаете полноценный приемник УКВ, который можно настроить на определенную частоту командами через интерфейс I2C. В центре находится модуль часов реального времени (Real-Time Clock, RTC), включающий микросхему обслуживания шины I2C и кварцевый резонатор, обеспечивающий высокую точность измерения времени. Установив текущие время и дату через интерфейс I2C, вы сможете в любой момент прочитать текущие время и дату через тот же интерфейс I2C. Этот модуль включает также литиевую батарейку с длительным сроком службы, обеспечивающую работу модуля даже в отсутствие электропитания от внешнего источника. Наконец, справа находится 16-канальный ШИМ/сервопривод, добавляющий к вашей плате Arduino 16 дополнительных аналоговых выходов.

Рис. 7.1. Устройства с интерфейсом I2C

Стандарт I2C определяется как стандарт шины, потому что допускает подключение множества устройств друг к другу. Например, если вы уже подключили дисплей к микроконтроллеру, к той же паре контактов на «ведущем» устройстве можно подключить целое множество «ведомых» устройств. Плата Arduino выступает в роли «ведущего» устройства, а все «ведомые» устройства имеют уникальные адреса, идентифицирующие устройства на шине.

На рис. 7.2 изображена возможная схема подключения к плате Arduino двух компонентов I2C: часов реального времени и модуля дисплея.

Через интерфейс I2C можно также соединить две платы Arduino и организовать обмен данными между ними. В этом случае одна из плат должна быть настроена как ведущее устройство, а другая — как ведомое.

Рис. 7.2. Arduino управляет двумя устройствами I2C

Аппаратная часть I2C

Электрически линии соединения интерфейса I2C могут действовать подобно цифровым выходам или входам (их также называют выводами с тремя состояниями). В третьем состоянии линии соединения не находятся ни в одном из состояний, HIGH или LOW, а имеют плавающий уровень напряжения. Кроме того, выходы являются логическими элементами с открытым коллектором, то есть они требуют использования подтягивающего сопротивления. Эти сопротивления должны иметь номинал 4,7 кОм, и только одна пара контактов на всей шине I2C должна подключаться через подтягивающее сопротивление к шине питания 3,3 В или 5 В в зависимости от уровня напряжения, на котором действует шина. Если какое-то устройство на шине имеет другое напряжение питания, для его подключения необходимо использовать преобразователь уровня напряжения. Для шины I2C можно использовать модули двунаправленного преобразования, такие как BSS138, выпускаемые компанией Adafruit (www.adafruit.com/products/757).

На разных моделях Arduino интерфейс I2C подключается к разным контактам. Например, в модели Uno используются контакты A4 и A5 — линии SDA и SCL соответственно, а в модели Leonardo используются контакты D2 и D3. (Подробнее о линиях SDA и SCL рассказывается в следующем разделе.) На обеих моделях линии SDA и SCL выводятся также на колодку, находящуюся рядом с контактом AREF (рис. 7.3).

В табл. 7.1 перечисляются наиболее распространенные модели платы Arduino и контакты, соответствующие интерфейсу I2C.

Рис. 7.3. Контакты I2C на плате Arduino Uno

Таблица 7.1. Контакты I2C в разных моделях Arduino

Модель

Контакты

Примечания

Uno

A4 (SDA) и A5 (SCL)

Контакты подписаны SCL и SDA и находятся рядом с контактом AREF. Эти линии интерфейса выводятся также на контакты A4 и A5

Leonardo

D2 (SDA) и D3 (SCL)

Контакты подписаны SCL и SDA и находятся рядом с контактом AREF. Эти линии интерфейса выводятся также на контакты D2 и D3

Mega2560

D20 (SDA) и D21 (SCL)

Due

D20 (SDA) и D21 (SCL)

Модель Due имеет вторую пару контактов I2C, подписанных SDA1 и SCL1

Протокол I2C

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT