Читаем Программируем Arduino. Основы работы со скетчами полностью

// sketch_05_03_blink_standard

void setup

{

  pinMode(13, OUTPUT);

}

void loop

{

  digitalWrite(13, HIGH);

  delay(1000);

  digitalWrite(13, LOW);

  delay(10000);

}

Ниже показана версия того же скетча, использующая библиотеку Narcoleptic:

// sketch_05_04_narcoleptic_blink

#include

void setup

{

  pinMode(13, OUTPUT);

}

void loop

{

  digitalWrite(13, HIGH);

  Narcoleptic.delay(1000);

  digitalWrite(13, LOW);

  Narcoleptic.delay(10000);

}

Единственное отличие этой версии в том, что она импортирует библиотеку Narcoleptic и использует ее версию функции delay вместо стандартной.

Запустив оба скетча на плате Mini Pro, питающейся напряжением 5 В и действующей на частоте 16 МГц, я выяснил, что для первого скетча в момент, когда светодиод выключен, потребляемый ток составил 17,2 мА. Для версии с библиотекой Narcoleptic потребляемый ток уменьшился до 3,2 мА, из которых большую часть потребляет светодиод On (около 3 мА), то есть, если его выпаять, средний потребляемый ток должен упасть ниже 1 мА.

Микроконтроллер очень быстро переходит в энергосберегающий режим, поэтому, если в вашем проекте имеется кнопка, нажатие на которую вызывает некоторые действия, нет необходимости использовать внешнее прерывание, чтобы вывести микроконтроллер из энергосберегающего режима. Можно написать код (что, возможно, проще), который будет переводить плату Arduino в энергосберегающий режим и выводить ее обратно 10 раз в секунду, проверять нажатие кнопки, сравнивая цифровой вход со значением HIGH, и затем выполнять какие-то операции вместо возврата в энергосберегающий режим. Следующий скетч демонстрирует, как это можно реализовать:

// sketch_05_05_narcoleptic_input

#include

const int ledPin = 13;

const int inputPin = 2;

void setup

{

  pinMode(ledPin, OUTPUT);

  pinMode(inputPin, INPUT_PULLUP);

}

void loop

{

  if (digitalRead(inputPin) == LOW)

  {

    doSomething;

  }

  Narcoleptic.delay(100);

}

void doSomething

{

  for (int i = 0; i < 20; i++)

  {

    digitalWrite(ledPin, HIGH);

    Narcoleptic.delay(200);

    digitalWrite(ledPin, LOW);

    Narcoleptic.delay(200);

  }

}

Во время выполнения этого скетча плата Mini Pro, питающаяся напряжением 5 В и действующая на частоте 16 МГц, потребляла мизерные 3,25 мА, ожидая, пока что-то произойдет. После замыкания контакта 2 на «землю» светодиод L мигнул 20 раз, но, так как для задержки между включением и выключением светодиода скетч использует все ту же версию delay из библиотеки Narcoleptic, потребляемый ток увеличился в среднем всего лишь до 4–5 мА.

Если изменить вызов delay внутри функции loop, чтобы выводить Arduino из энергосберегающего режима, скажем, 100 раз в секунду, потребляемый ток увеличится, потому что для перевода Arduino в энергосберегающий режим действительно требуется некоторое время. Однако задержка на 50 мс (20 раз в секунду) дает довольно хорошие результаты.

Вывод из энергосберегающего режима внешними прерываниями

Только что описанный подход можно с успехом использовать в разных ситуациях, однако если требуется получить более быстрый отклик на внешнее событие, можно реализовать вывод микроконтроллера из энергосберегающего режима с помощью внешнего прерывания.

Чтобы переделать предыдущий пример и использовать контакт D2 как приемник внешних прерываний, требуется приложить дополнительные усилия, но результаты получаются немного лучше, так как отпадает необходимость периодически проверять состояние контакта. Код скетча получился сложным, поэтому сначала я покажу сам код, а потом расскажу, как он работает. Если вы пропустили главу 3 о прерываниях, то вам стоит прочитать ее перед изучением примера.

// sketch_05_06_sleep_external_wake

#include

const int ledPin = 13;

const int inputPin = 2;

volatile boolean flag;

void setup

{

  pinMode(ledPin, OUTPUT);

  pinMode(inputPin, INPUT_PULLUP);

  goToSleep;

}

void loop

{

  if (flag)

  {

    doSomething;

    flag = false;

    goToSleep;

  }

}

void setFlag

{

  flag = true;

}

void goToSleep

{

   set_sleep_mode(SLEEP_MODE_PWR_DOWN);

   sleep_enable;

   attachInterrupt(0, setFlag, LOW); // контакт D2

   sleep_mode; // включить энергосберегающий режим

   // Теперь микроконтроллер простаивает, пока уровень напряжения

   // на контакте прерывания не упадет до LOW, затем...

   sleep_disable;

   detachInterrupt(0);

}

void doSomething

{

  for (int i = 0; i < 20; i++)

  {

    digitalWrite(ledPin, HIGH);

    delay(200);

    digitalWrite(ledPin, LOW);

    delay(200);

  }

}

Первое, на что следует обратить внимание, — в примере используются несколько функций из библиотеки avr/sleep.h. Подобно библиотеке avr/power.h, использовавшейся в предыдущих примерах, эта библиотека не является частью ядра Arduino — она поддерживает семейство микроконтроллеров AVR. То есть она не будет работать в модели Arduino Due, но в то же время, если вы разрабатываете проект с низким энергопотреблением на основе Arduino, модель Due должна быть последней в списке для выбора.

После выбора контактов для использования я определяю оперативную (со спецификатором volatile) переменную, чтобы подпрограмма обработки прерываний могла взаимодействовать с остальным скетчем.

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT