Shape
. Это не соответствует принципам систематичного, воспроизводимого и доступного тестирования. Как указывалось в разделе 26.3.4.1, мы часто прибегаем к разным уловкам, чтобы избежать этого. Однако пока будем предполагать, что существует наблюдатель, который замечает отклонения изображения от требуемого образца.
Shape
могут считывать точки, но не могут их изменять. С точки зрения тестирования все, что не вносит изменений (или, по крайней мере, не должно вносить), облегчает работу.
Что мы можем тестировать, а что не можем? Для того чтобы тестировать класс Shape
, мы должны попытаться протестировать его как отдельно, так и в сочетании с производными классами. Однако, для того чтобы проверить, что класс Shape
работает правильно с конкретным производным классом, мы должны протестировать этот производный класс.
Ранее мы уже отметили, что объект класса Shape
имеет состояние (значение), определенное четырьмя данными-членами.
vector
Color lcolor; // цвет линий и символов
Line_style ls;
Color fcolor; // цвет заполнения
Все, что мы можем сделать с объектом класса Shape
, — внести в него изменения и посмотреть, что произойдет. К счастью, изменить данные-члены можно только с помощью интерфейса, определенного функциями-членами.
Простейшим объектом класса Shape
является объект класса Line
, поэтому начнем с создания одного такого объекта и внесем все возможные изменения (используя самый наивный стиль тестирования).
Line ln(Point(10,10), Point(100, 100));
ln.draw; // смотрим, что произошло
// проверка точек:
if (ln.number_of_points != 2)
cerr << "Неправильное количество точек ";
if (ln.point(0)!=Point(10,10)) cerr << "Неправильная точка 1";
if (ln.point(1)!=Point(100,100)) cerr << "Неправильная точка 2";
for (int i=0; i<10; ++i) { // смотрим на перемещения объекта
ln.move(i+5,i+5);
ln.draw;
}
for (int i=0; i<10; ++i) { // проверяем, возвращается ли объект
// в исходное положение
ln.move(i–5,i–5);
ln.draw;
}
if (point(0)!=Point(10,10))
cerr << "Неправильная точка 1 после перемещения";
if (point(1)!=Point(100,100))
cerr << "Неправильная точка 2 после перемещения";
for (int i = 0; i<100; ++i) { // смотрим, правильно ли изменяются
// цвета
ln.set_color(Color(i*100));
if (ln.color != Color(i*100))
cerr << "Неправильное значение set_color";
ln.draw;
}
for (int i = 0; i<100; ++i) { // смотрим, правильно ли изменяется
// стиль
ln.set_style(Line_style(i*5));
if (ln.style != Line_style(i*5))
cerr << "Неправильное значение set_style";
ln.draw;
}
В принципе эта программа тестирует создание, перемещение, цвет и стиль. На практике мы должны учесть много больше факторов (с учетом отклонений от сценария), как мы это делали при тестировании функции binary_search
. И снова мы, скорее всего, убедимся в том, что считывать описание тестов из файла намного удобнее, а заодно придумаем более информативные сообщения об ошибках.
Кроме того, мы выясним, что совершенно не обязательно усаживать перед экраном компьютера человека, который отслеживал бы изменения состояния объектов класса Shape
. Итак, у нас появляются две альтернативы:
• замедлить работу программы, чтобы за ней мог следить наблюдатель;
• найти такое представление класса Shape
, чтобы мы могли читать и анализировать его с помощью программы.
Отметим, что мы еще не тестировали функцию add(Point)
. Для того чтобы проверить ее, мы, вероятно, должны были бы использовать класс Open_polyline
.
26.3.6. Поиск предположений, которые не выполняются
Бьерн Страуструп , Бьёрн Страуструп , Валерий Федорович Альмухаметов , Ирина Сергеевна Козлова
Программирование, программы, базы данных / Базы данных / Программирование / Учебная и научная литература / Образование и наука / Книги по IT