Читаем Программирование на языке Ruby полностью

<p>1.3.5. Методы и атрибуты</p>

Как мы уже видели, методы обычно используются в сочетании с простыми экземплярами классов и переменными, причем вызывающий объект отделяется от имени метода точкой (receiver.method). Если имя метода является знаком препинания, то точка опускается. У методов могут быть аргументы:

Time.mktime(2000, "Aug", 24, 16, 0)

Поскольку каждое выражение возвращает значение, то вызовы методов могут сцепляться:

3.succ.to_s

/(x.z).*?(x.z).*?/.match("x1z_1a3_x2z_1b3_").to_a[1..3]

3+2.succ

Отметим, что могут возникать проблемы, если выражение, являющееся результатом сцепления, имеет тип, который не поддерживает конкретный метод. Точнее, при определенных условиях некоторые методы возвращают nil, а вызов любого метода от имени такого объекта приведет к ошибке. (Конечно, nil — полноценный объект, но он не обладает теми же методами, что и, например, массив.)

Некоторым методам можно передавать блоки. Это верно для всех итераторов — как встроенных, так и определенных пользователем. Блок обычно заключается в операторные скобки do-end или в фигурные скобки. Но он не рассматривается так же, как предшествующие ему параметры, если таковые существуют. Вот пример вызова метода File.open:

my_array.each do |x|

 some_action

end

File.open(filename) { |f| some_action }

Именованные параметры будут поддерживаться в последующих версиях Ruby, но на момент работы над этой книгой еще не поддерживались. В языке Python они называются ключевыми аргументами, сама идея восходит еще к языку Ada.

Методы могут принимать переменное число аргументов:

receiver.method(arg1, *more_args)

В данном случае вызванный метод трактует more_args как массив и обращается с ним, как с любым другим массивом. На самом деле звездочка в списке формальных параметров (перед последним или единственным параметром) может «свернуть» последовательность фактических параметров в массив:

def mymethod(a, b, *с)

 print a, b

 с.each do |x| print x end

end

mymethod(1,2,3,4,5,6,7)

# a=1, b=2, c=[3,4,5,6,7]

В Ruby есть возможность определять методы на уровне объекта (а не класса). Такие методы называются синглетными; они принадлежат одному-единственному объекту и не оказывают влияния ни на класс, ни на его суперклассы. Такая возможность может быть полезна, например, при разработке графических интерфейсов пользователя: чтобы определить действие кнопки, вы задаете синглетный метод для данной и только данной кнопки.

Вот пример определения синглетного метода для строкового объекта:

str = "Hello, world!"

str2 = "Goodbye!"

def str.spell

 self.split(/./).join("-")

end

str.spell # "H-e-l-l-o-,- -w-o-r-l-d-!"

str2.spell # Ошибка!

Имейте в виду, что метод определяется для объекта, а не для переменной. Теоретически с помощью синглетных методов можно было бы создать систему объектов на базе прототипов. Это менее распространенная форма ООП без классов[5]. Основной структурный механизм в ней состоит в конструировании нового объекта путем использования существующего в качестве образца; новый объект ведет себя как старый за исключением тех особенностей, которые были переопределены. Тем самым можно строить системы на основе прототипов, а не наследования. Хотя у нас нет опыта в этой области, мы полагаем, что создание такой системы позволило бы полнее раскрыть возможности Ruby.

<p>1.4. Динамические аспекты Ruby</p>

Ruby — динамический язык в том смысле, что объекты и классы можно изменять во время выполнения. Ruby позволяет конструировать и интерпретировать фрагменты кода в ходе выполнения статически написанной программы. В нем есть хитроумный API отражения, с помощью которого программа может получать информацию о себе самой. Это позволяет сравнительно легко создавать отладчики, профилировщики и другие подобные инструменты, а также применять нетривиальные способы кодирования.

Наверное, это самая трудная тема для программиста, приступающего к изучению Ruby. В данном разделе мы вкратце рассмотрим некоторые следствия, вытекающие из динамической природы языка.

<p>1.4.1. Кодирование во время выполнения</p>

Мы уже упоминали директивы load и require. Важно понимать, что это не встроенные предложения и не управляющие конструкции; на самом деле это методы. Поэтому их можно вызывать, передавая переменные или выражения как параметры, в том числе условно. Сравните с директивой #include в языках С и C++, которая обрабатывается во время компиляции.

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT