Читаем Программирование на языке Ruby полностью

Это подводит нас к теме множественного наследования. Можно представить себе класс, который наследует нескольким классам. Например, классы Dog (Собака) и Cat (Кошка) могут наследовать классу Mammal (Млекопитающее), а Sparrow (Воробей) и Raven (Ворон) — классу WingedCreature (Крылатое). Но как быть с классом Bat (ЛетучаяМышь)? Он с равным успехом может наследовать и Mammal, и WingedCreature! Это хорошо согласуется с нашим жизненным опытом, ведь многие вещи можно отнести не к одной категории, а сразу к нескольким, не вложенным друг в друга.

Множественное наследование, вероятно, наиболее противоречивая часть ООП. Некоторые указывают на потенциальные неоднозначности, требующие разрешения. Например, если в обоих классах Mammal и WingedCreature имеется атрибут size (размер) или метод eat (есть), то какой из них имеется в виду, когда мы обращаемся к нему из объекта класса Bat? С этой трудностью тесно связана проблема ромбовидного наследования; она называется так из-за формы диаграммы наследования, возникающей, когда оба суперкласса наследуют одному классу. Представьте себе, что классы Mammal и WingedCreature наследуют общему предку Organism (Организм); тогда иерархия наследования от Organism к Bat будет иметь форму ромба. Но как быть с атрибутами, которые оба промежуточных класса наследуют от своего родителя? Получает ли Bat две копии? Или они должны быть объединены в один атрибут, поскольку все равно заимствованы у общего предка?

Это скорее проблемы проектировщика языка, а не программиста. В разных объектно-ориентированных языках они решаются по-разному. Иногда вводятся правила, согласно которым какое-то одно определение атрибута «выигрывает». Либо же предоставляется возможность различать одноименные атрибуты. Иногда даже язык позволяет вводить псевдонимы или переименовывать идентификаторы. Многими это рассматривается как аргумент против множественного наследования — о механизмах разрешения подобных конфликтов имен нет единого мнения, поэтому все они «языкозависимы». В языке C++ предлагается минимальный набор средств для разрешения неоднозначностей; механизмы языка Eiffel, наверное, получше, а в Perl проблема решается совсем по-другому.

Есть и альтернатива — полностью запретить множественное наследование. Такой подход принят в языках Java и Ruby. На первый взгляд, это даже не назовешь компромиссным решением, но, вскоре мы убедимся, что все не так плохо, как кажется. Мы познакомимся с приемлемой альтернативой традиционному множественному наследованию, но сначала обсудим полиморфизм — еще одно понятие из арсенала ООП.

<p>1.1.3. Полиморфизм</p>

Термин «полиморфизм», наверное, вызывает самые жаркие семантические споры. Каждый знает, что это такое, но все понимают его по-разному. (Не так давно вопрос «Что такое полиморфизм?» стал популярным во время собеседования при поступлении на работу. Если его зададут вам, рекомендую процитировать какого-нибудь эксперта, например Бертрана Мейера или Бьерна Страуструпа; если собеседник не согласится, то пусть он спорит с классиком, а не с вами.)

Буквально слово «полиморфизм» означает «способность принимать разные формы или обличья». В самом широком смысле так называют ситуацию, когда различные объекты по-разному отвечают на одно и то же сообщение или вызов метода.

Дамиан Конвей (Damian Conway) в книге «Object-Oriented Perl» проводит смысловое различие между двумя видами полиморфизма. Первый, наследственный полиморфизм, - то, что имеет в виду большинство программистов, говорящих о полиморфизме.

Если некоторый класс наследует своему суперклассу, то по определению все методы суперкласса присутствуют также и в подклассе. Таким образом, цепочка наследования представляет собой линейную иерархию классов, отвечающих на одни и те же методы. Нужно, конечно, помнить, что в любом подклассе метод может быть переопределен; именно это и составляет сильную сторону наследования. При вызове метода объекта обычно отвечает либо метод, унаследованный от суперкласса, либо более специализированный вариант этого метода, созданный в интересах именно данного подкласса.

В языках со статической типизацией, например в C++, наследственный полиморфизм гарантирует совместимость типов вниз по цепочке наследования (но не в обратном направлении). Скажем, если B наследует A, то указатель на объект класса А может указывать и на объект класса в; обратное же неверно. Совместимость типов — существенная черта ООП в подобных языках, можно даже сказать, что полиморфизм ей и исчерпывается. Но, конечно же, полиморфизм можно реализовать и в отсутствие статической типизации (как в Ruby).

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT