На любой стадии поиска каждый преемник ИЛИ-вершины соответствует некоторому альтернативному решающему дереву-кандидату. Процесс поиска всегда принимает решение продолжать просмотр того дерева-кандидата, для которого F-оценка минимальна. Вернемся еще раз к рис. 13.4 и посмотрим, как будет вести себя процесс, поиска на примере И/ИЛИ-графа, изображенного на этом рисунке. В начале дерево поиска состоит всего из одной вершины — стартовой вершины а, далее дерево постепенно "растет" до тех пор, пока не будет найдено решающее дерево. На рис. 13.10, показан ряд "мгновенных снимков", сделанных в процессе роста дерева поиска. Для простоты мы предположим, что h = 0 для всех вершин. Числа, приписанные вершинам на рис. 13.10 — это их F-оценки (разумеется, по мере накопления информации в процессе поиска они изменяются). Ниже даются некоторые пояснительные замечания к рис. 13.10.
После распространения поиска из первоначального дерева (снимок А) получается дерево В. Вершина а — это ИЛИ-вершина, поэтому мы имеем два решающих дерева-кандидата: b и с. Поскольку F( b) = 1 < 3 = F( c), для продолжения поиска выбирается альтернатива b. Насколько далеко может зайти процесс роста поддерева b? Этот процесс может продолжаться до тех пор, пока не произойдет одно из двух событий:
(1) F-оценка вершины b станет больше, чем F-оценка ее конкурента с, или
(2) обнаружится, что найдено решающее дерево.
В связи с этим, начиная просмотр поддерева-кандидата b, мы устанавливаем верхнюю границу для F( b): F( b) ≤ 3 = F( c). Сначала порождаются преемники d и e вершины b (снимок С),после чего F-оценка b возрастает до 3. Так как это значение не превосходит верхнюю границу, рост дерева-кандидата с корнем в b продолжается. Вершина d оказывается целевой вершиной, а после распространения поиска из вершины e на один шаг получаем дерево, показанное на снимке D. В этот момент выясняется, что F( b) = 9 > 3, и рост дерева b прекращается. В результате процесс поиска не успевает "осознать", что h — это тоже целевая вершина и что порождено решающее дерево. Вместо этого происходит переключение активности на конкурирующую альтернативу с. Поскольку в этот момент F( b) = 9, устанавливается верхняя граница для F( c), равная 9. Дерево-кандидат с корнем с наращивается (с учетом установленного ограничения) до тех пор, пока не возникает ситуация, показанная на снимке E. Теперь процесс поиска обнаруживает, что найдено решающее дерево (включающее в себя целевые вершины h и g), на чем поиск заканчивается. Заметьте, что в качестве результата процесс поиска выдает наиболее дешевое из двух возможных решающих деревьев, а именно решающее дерево рис. 13.4(с).
Рис. 13.10. Трассировка процесса поиска с предпочтением в И/ИЛИ-графе (h = 0) при решении задачи рис. 13.4.
13.4.2. Программа поиска
Программа, в которой реализованы идеи предыдущего раздела, показана на рис. 13.12. Прежде, чем мы перейдем к объяснению отдельных деталей этой программы, давайте рассмотрим тот способ представления дерева поиска, который в ней используется.
Существует несколько случаев, как показано на рис. 13.11. Различные формы представления поискового дерева возникают как комбинации следующих возможных вариантов, относящихся к размеру дерева и к его "решающему статусу".
• Размер:
(1) дерево состоит из одной вершины (листа) или
(2) оно имеет корень и (непустые) поддеревья.
• Решающий статус:
(1) обнаружено, что дерево соответствует решению задачи (т.е. является решающим деревом) или
(2) оно все еще решающее дерево-кандидат.
Рис. 13.11. Представление дерева поиска.
Основной функтор, используемый для представления дерева, указывает, какая из комбинаций этих воз-можностей имеется в виду. Это может быть одна из следующих комбинаций:
лист решлист дер решдер
Далее, в представление дерева входят все или некоторые из следующих объектов:
• корневая вершина дерева,
• F-оценка дерева,
• стоимость С дуги И/ИЛИ-графа, ведущей в корень дерева,
• список поддеревьев,
• отношение (И или ИЛИ) между поддеревьями.
Список поддеревьев всегда упорядочен по возрастанию F-оценок. Поддеревья, являющиеся решающими деревьями, помещаются в конец списка.
Обратимся теперь к программе рис. 13.12. Отношение самого высокого уровня — это
и_или( Верш, РешДер)