1. Число делится на 2. После однократного деления на 2 оно не будет иметь других делителей нуля, кроме 2, 3 и 5. Следовательно, это число — из последовательности. Так как 50 : 2 = 25, то полученное частное больше, чем 25. Наименьшее число последовательности, большее 25, есть 27. Таким образом, если следующее за 50 число делится на два, то оно равно 2 x 27 = 54.
2. Оно делится на 3. То же рассуждение. 50 : 3 = 16,7. Первое число последовательности, большее 16,7, есть 18. Если следующее за 50 число делится на 3, то это число равно 3 x 18 = 54.
3. Оно делится на 5. 50 : 5 = 10. Следующее за 10 равно 12,
5 x 12 = 60.
Таким образом, у нас 3 кандидата: 54, 54, 60. Наименьшее из этих трех и есть искомое.
Мы получили 54, используя только уже вычисленную часть последовательности Хэмминга.
Я предложил вам идею решения на примере. Вам следует ее обобщить, показать, что это всегда верно, и составить хорошую программу для решения.
Головоломка 6.
Я предлагаю вам начать с образования различных числовых последовательностей, получаемых вычеркиванием чисел. Вот первые из них:
1 : 2 3
2 : 3 5 7
3 : 5 7 11 13 17
На этом уровне можно поверить, что появляется возвратное соотношение: во второй последовательности нет четных чисел, в третьей — нет кратных трем. Образуем следующую: 25, кратное 5 содержится. Покажем механизм перехода от одной последовательности к другой последовательности
3 : 5 7 11 13 17 19 23 26 29 31 35 37 41 43 47 49
5 : 7 11 13 17 23 25 29 81 87 41 43 47
Если вы все это хорошо поняли, то вы теперь должны суметь обобщить. Обозначим черев
Головоломка 7.
Нужно попытаться сгруппировать эффект нескольких последовательных шагов. Нечетное
3(
что дает правило: добавить 1,
разделить на 2 и умножить на 3,
уменьшить на 1.
Предположим, что результат нечетен. За операцией «уменьшить на 1» сраву же следует операция «добавить 1», и в результате этих двух операций ничто не меняется. Отсюда следует новое правило:
добавить 1,
пока результат четен, делить его на 2 и умножать его на 3,
уменьшить на 1,
делить на 2, пока это возможно.
Составьте по этому правилу программу и заставьте ее перечислять все величины, полученные таким образом (все они будут нечетны. Заметьте, что только первое число в ряду может оказаться кратным трем).
Если вы замените 3 на
Вернемся к случаю числа 3. Наше правило можно переписать следующим образом: пусть
Назовем эту операцию переходом
Можете ли вы показать, что:
если
если
Любое число вида
Для того чтобы
Если вы хотите проверить о помощью программы, что это свойство выполняется для любого нечетного
Но построить список априори, без вычеркиваний в более широком списке, так же трудно, как построить последовательность счастливых чисел…
Затем можно пытаться сделать еще один шаг: для любого не вычеркнутого