Читаем Программирование игр и головоломок полностью

Эту игру, производную от вошек, программировать намного проще, потому что всего полей только 35, и только 7 из них являются игровыми полями на каждом ходе. Это существенно ограничивает работу. В реализованной мною версии ответ микрокомпьютера практически мгновенный (порядка секунды). Я не думаю, что я располагаю программой-чемпионом, я не очень хорошо знаком с атим родом игр…

<p>5. Стратегия без игры (выигрывающие стратегии)</p>

Я объединил в этой главе несколько игр, которые можно найти на рынке и для которых существует стратегия решения. Как только она становится известной, игра теряет всякий интерес. Единственное связанное с такими играми удовольствие — обнаружить, как с ними покончить. Поэтому напишите программу — это наилучший способ сформулировать выигрышную стратегию, а затем забудьте игру, она вам больше ничего не принесет. И тем хуже, если продавцы этих игр не согласятся со мной… Некоторые из этих игр являются классическими среди информатиков. Я попытался их немного подновить. Многие стратегии могут быть элегантно запрограммированы с помощью рекурсивных процедур, но на языке Бейсик это невозможно. Всегда наступает день, когда фанатики этого языка, такого удобного для первых шагов, начинают понимать его ограниченность… Рекурсивность допустима в языках LSE и Паскаль.

? Игра 27. Бездельник.

Эта игра на рынке есть. Она имеет вид дощечки, в которую продето n гвоздей, скользящих через соответствующее отверстие, причем концы гвоздей расплющены и в каждом просверлено отверстие, в которое продето кольцо. Вы безусловно можете изготовить все это сами, используя достаточно толстые гвозди (диаметром порядка четырех миллиметров). Пропустите гвоздь в отверстие в 5 миллиметров в дощечке, а затем расплющите острие молотком. Просверлите головку наконечника, образовавшуюся у конца гвоздя, и вставьте туда кольцо для ключей. Каждое кольцо должно проходить вокруг предыдущего гвоздя. Трудность игры зависит от n. Для n = 6 она довольно быстро приходит к концу. Для n = 8 она требуем долгих минут. Она почти невыполнима, если n больше восьми.

Через кольца проходит челнок, длинный замкнутый контур, представленный на рисунке. Дело в том, чтобы его вынуть и, таким образом, освободить от колец (рис. 17).

Первое, что нужно сделать — это научиться, как пропускать одно кольцо через челнок, или как его оттуда вынуть. Несколько манипуляций — и вы быстро убеждаетесь, что в какой стадии ни была бы игра, всегда можно надеть или снять первое кольцо, которое свободно (не проходит вокруг какого-либо гвоздя). Можно также освободить кольцо, которое следует за первым занятым кольцом (если оно проходит вокруг челнока), или одеть его на челнок, если оно не одето. Таким образом, игру «бездельник» можно заменить равносильной игрой, которую легче представить на компьютере.

Эта игра ведется на таблице, разделенной на несколько полей (8 полей на рисунке). В начальном состоянии каждое поле покрыто шашкой. Поля размечены цифрами. Играть на данном поле — значит, поставить туда шашку, если поле пусто, и удалить шашку, стоящую на этом поле — в противоположном случае. Правила игры следующие:

— можно всегда играть на первом поле,

— можно играть на поле, которое следует за первым занятым полем.

Есть две возможных игры:

НАДЕВАТЬ: игровое поле вначале пусто. Заполнить все поля.

СНИМАТЬ: игровое поле вначале наполнено шашками на каждой клетке. Нужно все убрать,

Эта задача имеет очень элегантное рекурсивное решение. Но если вы немного подумаете, то вы сможете также найти очень простое итеративное решение, причем игра НАДЕВАТЬ оказывается более простой, чем игра СНИМАТЬ.

Вот другая интерпретация этой игры — для тех, кто любит арифметику. Вы можете считать, что каждое поле может принимать два состояния (свободное и занятое), что эквивалентно двоичным числам — например, 0 для свободного и 1 для занятого полей. Тогда каждая конфигурация является представлением целого числа по основанию 2. Таким образом, рис. 18 представляет целое число 11111111 в качестве начального состояния и 01011011 в качестве промежуточного состояния. Ниже нам будет удобно читать эти слова в обратном порядке, так что в этих новых обозначениях промежуточное состояние соответствует двоичному числу 11011010.

Ясно, что эта игра порождает последовательность чисел (в приведенном выше примере число равно 218 в десятичной записи). При переходе от одного числа к следующему меняется лишь одна двоичная цифра. Можете ли вы сказать, какая последовательность порождается таким образом в каждой из игр?

?* Игра 28. Зануда,

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT